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ABSTRACT Ophthalmic anesthesia plays a crucial role in eye surgery. However, the conventional practice of
this process is a blind procedure, in which a needle is inserted blindly into the cadaver. This paper introduces a
needle tip tracking system for ophthalmic anesthesia training focusing on the Retrobulbar block procedure.
The study presents a development in a prototyped system using Hall effect sensor arrays to track a 5D
magnetized needle tip (X, Y, Z, θ , ϕ). The orbital structure is fabricated with embedded Hall effect sensors.
The extended Kalman filter and least square method are developed to select the observation model from
multiple training sets and to estimate the needle tip coordinates. The robotic manipulator (ABB YUMI)
is used to model the training set between the distance and the initial angle of the magnetized needle. The
developed system provides the needle tip position with an RMS of Euclidean distance error up to 1.7398 ±
0.5288 mm. As a result, the system is capable of providing the needle tip positions with an acceptable error
comparing the system’s accuracy with the size of the retrobulbar target space and important anatomies.
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INDEX TERMS Educational robots, hall effect devices, medical robotics, simultaneous localization,
mapping.

I. INTRODUCTION14

One of the essential preparations of ophthalmic surgery is eye15

anesthesia [1], [2]. The challenge is inserting an anesthetic16

needle into an area behind an eye globe where the most17

sensitive part of the human body abounds with important18

muscles and nerves [3], [4]. Retrobulbar block, the most19

common procedure of eye anesthesia, uses a cavity between20

an eye globe and an orbital structure to enter a retrobulbar21

space. A needle (22-27 Gauge) is inserted at an inferolateral22

space of the orbit cavity and penetrated until it reaches the23

area behind the eye globe [5], [6]. The needle is then pointed24

medially to enter the retrobulbar space. Since the human25

anatomy is unique, physicians have to abide by only their26

experience to estimate the movement and location of the27

needle. A very slight aberration from the correct process can28

cause muscle hemorrhages, globe penetrations, blindness,29
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and lethal damages [7]. Therefore, in practical cases, oph- 30

thalmologists must go through extensive practices before 31

operating. In general, the type of practice for eye anesthe- 32

sia is a cadaveric training system [8], [9], [10]. After the 33

fresh cadaver is acquired, the expert physicians supervise the 34

trainees in the practice procedures, focusing on their postures 35

and the remaining needle length [9], [10]. This information 36

will allow the experienced inspectors to prognosticate the 37

needle tip position in the cadaver. However, the needle’s 38

trajectory is still predicted without empirical evidence. As a 39

result, the trainees will not receive feedback if they enter 40

the wrong target area, or damage crucial eye anatomies [11], 41

[12]. Although the complication rate of expert physicians 42

for eye anesthesia is rare (0.1%), the rate of injuries from 43

non-experienced doctors tends to have a significant number 44

around 4% [13], [14]. This issue elucidates the non-effective 45

system for eye anesthesia training. Moreover, the cadaveric 46

training system requires a soft cadaver, which is significantly 47

more challenging to acquire than a typical cadaver [15], [16]. 48
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II. RELATED WORK49

Many training systems have been developed to provide posi-50

tion feedback to the trainees [17], [18]. Back in 1996, the51

ophthalmic retrobulbar injection simulator or ORIS, which52

uses embedded ultrasonic sensors in manikin’s skull, was53

introduced to provide a trainee with a needle tip position [19],54

[20]. This system has a high success rate in delivering the55

correct needle tip coordinates. However, the characteristic of56

the ultrasonic sensor limits the system’s capabilities by only57

providing an accurate position when no obstacle is present58

between the needle tip and sensor [20]. In 2001, the oph-59

thalmic anesthesia simulation system (OASiS) developed by60

researchers from the Indian Institute of Technology Madras61

used a different concept to detect the needle tip position. They62

selected the electric field-based tracking system to capture the63

needle position in a manikin [21], [22]. Although the system64

provided a precise needle tip position, the needle was required65

to be attached with an additional circuit that could potentially66

cause difficulty during operation [22].67

An eye anesthesia simulator (EATS) has been developed68

using an electromagnetic detection system [23]. The advan-69

tages, such as the non-contact detection, sensitivity with70

metallic parts, and appropriated workspace, are ideal for71

this application [24]. First, a commercial active magnetic72

tracking system (Aurora V2 System) was selected as the73

primary device [25]. The ability to detect an accurate position74

of this system provided trainees with a needle tip position75

calculated from a sensor attached to the syringe [26]. Despite76

the system’s high precision, the difficulty in use, larger size,77

and price prevented most from gaining access to this sys-78

tem. Moreover, the NDI system requires calibration after79

transporting, which requires an engineer in the installation80

process [27], [28]. The modification on the syringe with an81

extensional sensor also presents this system with an extra82

layer of impracticality. As a result, the systemwas redesigned83

with passive magnetic sensors (Hall effect sensor) to capture84

the magnetic flux emitted from a magnetized needle.85

The Hall effect sensor is a commonly used positioning86

sensor [29]. It provides counts of detecting signals from87

a nearby magnetic source, which are transformed into the88

distance or position of an object [30]. However, the Hall89

effect sensor is also utilized as a localizing sensor, using90

the conversion of magnetic flux intensity into the real-time91

position of an object. Many studies have developed an array92

of Hall effect sensors to localize metallic materials in 3D93

coordinates with known characteristic parameters [31], [32],94

[33]. The previous studies on the relationship between mag-95

netized needle and Hall effect sensor in a perpendicular direc-96

tion illustrated the potentiality of using the Hall effect sensor97

to detect the magnetized needle [23]. Experimental results98

indicated that there are several advantages of the Hall effect99

detecting system, which consisted of the consistent sensing100

data (p < 0.5 in each interested distance), appropriate half-101

live activity (> 2 hours), and suitable sensing area (≈13 mm).102

Additionally, the maximum detecting workspace between the103

needle tip and a sensor is confined to 13mm radius, a distance104

more significant than the average size of a human’s globe in 105

an orbital structure. However, further studies show that the 106

perpendicular model used in the calculation cannot provide 107

a precise needle tip position even when the actual needle is 108

located inside the detecting space. This paper introduces the 109

development of the eye anesthesia training system in various 110

aspects, including the multiple angular training set, the mul- 111

tiple angular model selection algorithms, and the localization 112

technique from the multiple angular models. 113

III. SYSTEM ARCHITECTURE 114

The EATS gives trainees exceptionally reliable needle tip 115

positions in the simulation of orbital anatomy. The system 116

components consist of the human manikin, orbital structure 117

model, solid stainless-steel needle (27G), magnetizer, and 118

magnetic magnitude checker, as shown in Fig 1. 119

FIGURE 1. The system architecture of EATS to practice or examine the
trainee.

The current study focuses on the training system for retrob- 120

ulbar block, which is one of the standard processes for 121

ophthalmic surgical preparations [34]. Using an inferolateral 122

quarter of the orbital structure model from the CT scan as a 123

starting structure, a Hall effect sensor array is inserted into 124

the model. The sensor array comprises 26 high-resolution 125

Hall effect sensors [35]located in 4 columns, the same as 126

the previous study prototype [23]. The Hall effect sensors 127

capture the strength of the magnetic field emitted from a 128

magnetized needle. The magnetizer induces the charges on 129

the needle. The sensing voltages are aggregated by an ana- 130

log multiplexer (model ADG732). The data is then con- 131

veyed to a digital-analog converter (DAC). The 12-bit DAC 132

(ADS1115) is used in transforming the sensing voltage into 133

digital data [36]. The Arduino Mega is selected as the central 134

controller to convey the digital data to a computer using the 135

UART protocol. Extended Kalman filter (EKF) and Least 136

Squares Estimation (LSQ) have been developed to localize 137

the needle tip positions using activate sensing data and exper- 138

imental models [37], [38]. TheGUI has been developed under 139

the Unity engine to illustrate the 3D coordinates of needle 140

tip position [39]. The GUI has been developed under the 141
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Unity engine to illustrate the 3D coordinates of needle tip142

position [40].143

IV. MATERIALS AND METHODS144

A. PRINCIPLE OF A MAGNETIZED NEEDLE145

Due to the shape of the anesthetic needle, a cylindrical dipole146

model is selected to simulate a characteristic of magnetic147

intensity around the magnetic source. The needle passes148

through magnetizer-induced positive charges to one end of149

the needle while pushing negative charges to another end.150

This circumstance creates a material called ferromagnetic151

material, as shown in Fig. 2a. Additionally, the magnetic flux152

tends to travel from the positive end to the opposing end,153

as shown in Fig. 2.154

The strength of a magnetic field at the target area (B(r)),155

where coordinates are defined with a distance from the center156

of needle (r) and angle from the magnetization direction (θ),157

is denoted by µ0 and −→m .µ0 is the permeability of vacuum158

and−→m refers to the magnetic moment of the magnetic source.159

In this study, the orientation in x and y axis (ϕ) is assumed to160

be equal with the magnetization direction −→m as shown in (1)161

and Fig. 2b [41].162

B(r) =
µ0

4π
[
3−→r (−→r .−→m )−−→m

r3
] (1)163

Equation 1 can be rewritten in a team of field strength in164

the x and y directions by removing dot products and cross165

vectors. Besides, the strength in the z-direction is equal to166

zero.167

B(r)x =
µ0

4πr3
[3 sin (θ ) cos(θ)] (2)168

B(r)y =
µ0

4πr3
[3 cos2(θ )− 1] (3)169

Equations 1-3 denote that the magnetic strength in the170

target coordinate is mainly dependent on the distance (r) and171

angular (θ) between the magnetic source and target area.172

Since the stainless needle is the composite material, the char-173

acteristic values of conductive material (m) remain unde-174

finable. However, these parameters can be modeled by the175

experiments in the next section.176

B. THE LOCALIZATION TECHNIQUE FROM THE MULTIPLE177

ANGULAR MODELS178

The sensor array is designed with n number of Hall effect179

sensors. Each Hall effect sensor (si) captures the strength180

of the magnetic field from the needle (eki ) at frame k,181

integrating with the covariance of sensing data (εki ). Each182

sensor is denoted by sensor state (ŝi), which consisted183

of position (Pi(Xi,Yi,Zi)) and orientation in the quater-184

nion system (qi(xi, yi, zi,wi)) relating to the system’s origin185

(X ,Y ,Z )Origin as shown in Fig. 3.186

ŝi = (Pi, qi, eki , ε
k
i ) (4)187

Time of arrival (TOA) is involved in aggregating a data set188

(Ek ) from each sensing data and calculating the covariance189

value at frame k. The sensing data is then applied with MSL190

FIGURE 2. The characteristic of positive and negative charges in
ferromagnetic materials after passing the magnification process (a). The
frame diagram between the magnetized needle (X, Y, Z)Needle and the
world coordinates (X, Y, Z)Origin, which can be represented in a term of
the spherical coordinate system (r, θ , ϕ) (b).

FIGURE 3. The magnetized needle and the Hall effect sensor array with
different sets of distance and angle in the planar of vector direction (d).

to calculate the direction of the magnetic needle (
−→
d k ). The 191

system uses the Least Square Estimation technique (LSQ) to 192
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select the initial angle of the magnetized needle (θ0) from193

training models T (θ i0). The needle tip state (−→x k ) is acquired194

by applying the Extended Kalmar Filter (EKF) with sensing195

data, training model, previous belief state, and initial angle as196

the input data of system, as shown in Fig 4.197

FIGURE 4. The simplified localization algorithm of EATS estimates the
needle tip coordination using the training data set based on LSQ and EKF
algorithms.

C. MAGNETIC NEEDLE LOCALIZATION (MSL)198

MSL calculates a unit vector, representing a direction of mag-199

netic source in the Hall effect sensor array, and registers the200

sensing data to the exact original coordinates in the system.201

First, the sensing data is captured from each observation202

at frame k by an active magnetic source, without a false203

detection, which is obtained from eki and the threshold T. The204

threshold filter is defined as (5).205

eki =

{
eki , Activated sensor, if ei > T
0, Inactivated sensor, if ei ≤ T

(5)206

The threshold is set as a result from the first experiment.207

The filtered data is then applied with the directional vector of208

the activated sensors. The directional vector is denoted by (6).209

−→
d =

eki
|
∑

(Ek )|
(6)210

where
−→
d is a directional vector,

∑
(Ek ) stands for the sum-211

mation energy of activated sensing data.212

Additionally, the strength of magnetic flux, due to the213

principle of the dipole model, fairly emits from a positive214

side to a negative side. Thus, the system supposes that the215

directional vector represents a projection of the needle in a216

planar plane (x and y axis (ϕ)), as shown in Fig. 3. Besides,217

the position and orientation of sensor states are defined during218

the fabrication process. A relationship of sensing data and219

distance in the planar plane leading to (7)-(10). 220

eki =
µ0

4π
[
3−→r (−→r .−→m )−−→m

r3
] (7) 221

ri =
√
(x2 + y2 + z2) (8) 222

θi = arccos
z√

(x2 + y2 + z2)
= arccos

z
r

(9) 223

ϕ = arccos
1

|
−→
d |

(10) 224

where ri denotes the distance between the magnetic source 225

and sensor number i, while θi is an orientation between them. 226

x, y and z are the coordinates of needle tip referring to the 227

position of sensor number i. 228

Although the distance and angular of the magnetized nee- 229

dle can be calculated by (7)-(10) and the given initial angle 230

(θ0), the initial angle affects the magnetization direction (−→m ), 231

which affects the system unable to calculate the needle tip 232

coordinates with (7). Therefore, we select the 3rd degree 233

polynomial regression between the sensing data and known 234

distance from the first experiment as the transfer function, 235

which is denoted in (11). 236

ri(θ0) = ae3i + be
2
i + cei + d (11) 237

where a, b, c and d are the constant parameters of 3rd degree 238

polynomial regression from the different initial angles in first 239

experiment (Table 1). The experiment sets to collect the data 240

between the sensor and the posture of the magnetized needle 241

will be discussed in the experimental chapter. 242

TABLE 1. The set of parameters in transfer function f(θ0).

D. THE STATE OF MAGNETIZED NEEDLE TIP 243

The system calculates the needle tip position as the state (−→x k ) 244

at frame k in a term of the cartesian coordinate system, where 245

the direction of unit vector
−→
d refers to the direction in x 246

and y axis, while the output of (8), (9), and (10) denotes the 247

coordinates in
−→
d and z with the orientation of the needle (θ0). 248

The transfer function in (11) also applies to the covariance 249

of sensing data (εki ) to calculate the covariance of needle tip 250

position (σ ) 251

x̂k = (Pneedle, σ )k = ((X ,Y ,Z )needle, ϕ, φ, θ0, σ )k (12) 252

Nevertheless, the initial angle of the magnetized needle 253

remains unknown. Therefore, Least Squares Estimation 254

(LSQ) technique involves selecting this angle from training 255

data sets. 256
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E. TRAINING MODEL OF OBSERVATION WITH INITIAL257

ANGLE (θ0)258

Due to the robotics experiment, the robot arm is assigned259

to generate an observation model between coordinates and260

sensing data named as a training set. This training set is261

represented as a set of a needle tip’s coordinates (Pneedle) and262

magnetic intensity (e) as in (13). The training data consists of263

the needle tip’s state in 4 different initial angles in the current264

study 0, 15, 30 and 45 degrees, respectively.265

T (θ0) = {Pneedle, e} (13)266

F. LEAST SQUARES ESTIMATION (LSQ) WITH THE267

MAXIMUM LIKELIHOOD TRAINING MODEL268

The needle tip state was estimated in a term of Bayesian269

learning techniques. The distances and angle between the270

needle tip and sensor are modeled as (14). Thus, the needle tip271

position and orientation directly affect the state of the sensor272

array.273

H (ŝn,T (θ0)) = Z k = (µ, σ )k (14)274

where Z k is an observation state at frame k, consisting of275

the mean and covariance of the needle tip position referring276

to the world coordinate (P)Origin. H denotes the transfer277

function between the sensor state and the observation state.278

T (θ0) is the training model of initial angle θ0. Localization279

algorithm from training model with initial angle θk . The280

magnetic strength of all sensors is captured in frame k as281

shown in Fig. 5.282

FIGURE 5. Localization algorithm from training model with initial
angle θk . The magnetic strength of all sensors is captured in frame k.

The localization algorithm with observation data estimates283

the needle tip state (−→x k ) using the training set. The sensing284

data is compared with all training sets T (θ0) to calculate a285

set of feasible sensing states. The possible coordinates from286

sensor number i (Pti ) are then plotted refer to the sensor posi-287

tion as shown in Fig. 6a. We multiply the possible coordinate288

with the homogenous transform (H i
0) of each sensor to set the289

origin coordinates as the world coordinates, as in Fig. 6b.290

Algorithm 1 The Needle Tip Localization With Observation
Set θ i0(H )

Input: Sensor State: ŝn, Training Set of Needle with Initial
angle k: T (θ i0)
Output: The estimated position of Needle tip:
Pneedleo = (µ, σ )

1) Select coordinates with sensing data equal to the train-
ing set θi and covariance εn as shown in Fig. 6a.
p(Pneedlei |eki ) = Pneedle where eki ± εi = e

2) Add possible coordinate with the reference position as
shown in Fig. 6b.
Pneedle0 = Homogenous Transformio P

needle
i

3) Add weight to the possible coordinates.
w(Pneedle0 ) = ∀(Pneedleo )+ 1

4) Check overlap area from with coordinates’ weight as
shown in Fig. 6c.
w(Pneedleo ) > Threshold, where the threshold
is activated sensors − 2

5) Calculate the observation state Z k from center (µ) of
the overlap area and its covariance (σ ).

The LSQ technic involved estimating the angle of the nee- 291

dle to the origin (θ0) from the training set. Then, a maximum 292

likelihood model selects the observation model from the min- 293

imum output from the subtraction between the observation 294

model and calculation as in (15). Besides, equation (7)-(11) 295

leads to the transfer function f (Ek , θ0). 296

θ0 = argmin||(θ0)||H (ŝn, ||(θ0))− f (Ek , θ0)||2,

θ0 = 0, 15, 30, 45
(15) 297

G. NEEDLE TIP LOCALIZATION SYSTEM BASED EXTENDED 298

KALMAR FILTER (EKF) 299

After LSQ selects the observation model and initial angle of 300

the needle, the system resamples and updates the needle state 301

with the observation model to estimate the belief of needle 302

state using an Extended Kalmar filter. Fig. 7 illustrates the 303

concept of the needle tip tracking system using EKF using N 304

units of the Hall effect sensor. Themagnitude and observation 305

vectors are converted to possible distances and orientations 306

from the sensor’s coordinates in the frame (k). 307

EKF provides the system to functionally estimate the 3D 308

position of the needle tip in a term of probability density 309

function (PDF). The needle tip’s coordinates are initially 310

modeledwith a first-orderMarkov chainwith the sensing data 311

as an independent condition. This chain can be written as: 312

x̂k = fk (x̂(k−1), ŝn, θ0,Ek ), u(t) (16) 313

zk = hk (ŝn,T (θ i0), x̂k )+ vk (17) 314

where u(t) is the control function of the needle, which does 315

not consider in this EKF system because human gesticulation 316

is unpredictable. vk denotes the covariance parameters from 317

algorithm 1. zk represents the observation model with the 318

99766 VOLUME 10, 2022



K. Borvorntanajanya, J. Suthakorn: Development of a Virtual Simulator for a Novel Design Non-Permanent Magnetic Needle

FIGURE 6. (a) The plot of needle tip’s coordinates using the training models with different initial angles (0 to 45 degrees) in sensor number 3.
(b) The registration of needle tip coordinates using all active sensors and the training model with different initial angles (0 to 45 degrees). (c) The
estimated needle tip state from the calculation of overlap space by weight parameter (Intensity).
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FIGURE 7. The concept diagram of EKF using MSL and LSQ with the
training observation models and previous beliefs of the needle tip state.

initial angle from algorithm 1. Besides, we do not consider319

the control function (u) in the prediction state of EKF because320

human gesticulation is unpredictable.321

Algorithm 2 Extended Kalman Filter to Estimate the Needle
Tip State [42]
Input: State of Needle Tip Position:
x̂(1:k−1) = x̂1, x̂2, . . . , x̂(k−1)
Sensor State: ŝn, Training Set of Needle with Initial angle
i: T (θ i0) Covariance of Sensing Data: εk , Covariance of
Observation Data: vk Initial angle from LSQ: θk , Previous
covariance error: σ(1:k−1)
Output: Needle Tip State: x̂(k|k), Covariance error: σ(k|k)

Prediction Step:
1) Predicted state estimate: x̂(k|k − 1) = f (x̂(k − 1|k −

1), ŝn, θ0,Ek )+εki where u(t) is set to be 0 in this system
since the hand gesticulation is unpredictable.

2) Predicted estimate covariance:
σ(k|k − 1) = f (σ(k − 1|k − 1))
Update Step:

3) Measurement residual:
ỹk = zk − hk (ŝn,T (θ0), x̂k )+ vk

4) Optimal Kalman gain:
Kk = (σ(k|k − 1))hk (σ(k|k − 1)+ vk )−1

5) Update State:
x̂(k|k) = x̂(k|k − 1)+ Kk ỹk

6) Update covariance:
σ(k|k) = ((I − Kkhk )σ(k|k − 1))

where Kk denotes Kalman gain at time k . f is the MSL cal-322

culation model of needle tip coordinate and activated sensor323

positions. hk is the needle tip localization based on observa-324

tion models at time k.325

V. EXPERIMENTAL SETUP326

A. EXPERIMENT FOR MULTI-DIRECTIONS327

CHARACTERIZATION328

A robotic manipulator (ABBYumi) was assigned to precisely329

move an end effector integrated with a magnetized needle330

to target positions. A needle holder and sensor socket were331

fabricated by 3D printing, as shown in Fig. 8, while the needle332

FIGURE 8. The multiple angles characterization experiment between a
Hall effect sensor and magnetized needle using a robot arm. The modified
needle holder with ABB Yumi gripper. The Hemisphere command was set
in the first experiment with 451 commands in each radius.

FIGURE 9. The 3× 3 array of Hall effect sensors and their sensor state (ŝi )
in MATLAB.

holder was modified with a socket for the robotics finger to 333

grasp. The robot system set the gripping force as 12 Nm to 334

grip the holder while moving to the designed coordinates. The 335

needle tip coordinates, representing an end of the effector in 336

the system, were registered and calculated by the 4-Points 337

tool tip calibration procedure [43]. This process generates 338

the parameter set that refers to the needle tip property in a 339

coordinate system.We defined the minimum error per motion 340

as 0.1 mm and maximum velocity as 5 mm/s. 341

The sensor position was set as the origin of the system 342

((P)Origin), as shown in Fig. 8. The sensor positionwas fused 343

with a set of commands to generate the target coordinates 344

in a hemisphere shape. 4 command sets, which have differ- 345

ent initial angles between the needle and Hall effect sensor 346

from 0 to 45 degrees (15 degrees per each set), were created 347

byMATLAB. Each command set consisted of the hemispher- 348

ical coordinates with the specific orientation varying radius 349

from 0.5 mm to 14.5 mm (1 mm per step), which have an 350

origin at the incipient position. Additionally, each radius of 351

the hemisphere contains 452 coordinates. The robot arm was 352

programmed to move the end effector to all coordinates in 353

the anticlockwise direction, as shown in Fig. 8. The robot 354

arm moved from the inside hemisphere (0.5 mm) to the 355

outside hemisphere (14.5 mm), respectively. We recorded 356

the coordinates together with sensing data from the Hall 357

effect sensor. At the end of each experiment, the automated 358
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FIGURE 10. (a) The fully assembled orbital structure with embedded sensors (left). (b) The Experiment of magnetized needle
localization in orbital structure (right).

FIGURE 11. The 8 target points and pathway of motion (red) in the validation system related to the anatomical landmarks of orbital
structure.

tool was reinitiated to the center of the Hall effect sensor.359

The manipulator stopped for 2 seconds in each movement,360

while the sensing data was sampled 20 times. The system361

used a standard I/O system from ABB YUMI as a state362

indicator. 24 V output from the robot was stepped down by363

Programmable Automation Controllers (PLC) to 5 V before364

being sent to the digital input port of the microcontroller.365

We used this signal to indicate the stop state of the robot arm366

and started sampling the data.367

Additionally, when the manipulator approached the target368

position, the state indicator was set for 2 seconds. The sensing369

data was passed LPF and averaged to plot a mean as the370

intensity of magnetic flux in each coordination system. The371

system also calculated the SD (standard deviation) of sensing372

data in each command. Finally, the filtered data was applied373

with a threshold classification for determining the sensing 374

workspace. The threshold was defined as 4 Gauss from the 375

maximum SD in the last shell of the command set. 376

B. EXPERIMENT FOR MULTI-MODEL PREDICTION AND 377

LOCALIZATION WITH HALL EFFECT SENSOR ARRAY 378

The array of 9 Hall effect sensors was fabricated in a 379

3× 3 square shape as shown in Fig.9. The sensor sockets 380

were fabricated by a 3D printing technique using PLA mate- 381

rial, which provides a resolution of around 0.1 mm. The 382

center of sensor number 1 was assigned as the origin of 383

the measurement system ((P)Origin). The distances between 384

sensors were 8 mm in both the x and y axes due to the 385

workspace from the first experiment. The command set, 386

which consisted of 9 coordinates, was generated randomly in 387
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FIGURE 12. The box plot between the sensing data and the distance from the sensor in the hemisphere shape (from
1.5 to 13.5) of 4 different initial angles.

FIGURE 13. The SD plot of the training set with the initial angle of
30 degrees varying by different distances.

FIGURE 14. The error bar plot of the training set with 30 degrees as an
initial angle in different distances from the origin.

the workspace. The robot arm was commanded to move the388

needle tip from point 1 to 9, respectively, while the sensing389

data was captured with a sampling rate of around 10 Hz,390

TABLE 2. Range of position coordinates for 8 target points.

as shown in Fig. 9. We set the velocity of this experiment as 391

constant velocity (2 mm/sec). The experiment was repeated 392

4 times with different command sets and different initial 393

angles from 0 to 45 (as defined in training data). The LSQ 394

and EKF techniques were applied to estimate the needle tip 395

position based on the training set from the first experiment. 396

We generated the ground truth using the position feedback 397

from the robot arm every 0.2 seconds. The Euclidean distance 398

between the ground truth arm and estimated needle states was 399

calculated to illustrate the accuracy of the developed system. 400

C. EXPERIMENT FOR NEEDLE TIP LOCALIZATION IN 401

ORBITAL CAVITY 402

As a result of both experiments, the maximum detection 403

range of this new version of the Hall effect sensor was 404
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FIGURE 15. The 2D plot of the needle tip coordinates (side view), which has to sense over the threshold, in 4 different initial angles.
The black line illustrates the workspace of the Hall effect sensor with the magnetized needle.

FIGURE 16. The needle tip localization with known initial angle experiment (0 Degree). The robot arm moves the needle tip from origin to
9 targets (blue marks) with constant velocity (2 mm/s). The ground truth pathway (black line) is compared to the estimated coordinates of the
needle tip from the developed system (red marks) every 0.2 seconds. Sensor number 1 is set as the origin of this experiment.

FIGURE 17. The plot of RMS error of Euclidean distance (blue line) with the ground truth of needle tip coordinates (X,Y,Z) from the
robotics end effector in 4 different initial angles (0, 15, 30, and 45).

almost the same as the space in the human’s orbital cav-405

ity (12.0 -14.0 mm) [3], [44]. Therefore, the system was406

designed with the same sockets’ position from previous stud- 407

ies [45]. The orbital structure was embedded with 24 sensors, 408
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FIGURE 18. The plot of Euclidean distance error (blue line) and the output state (red mark) with the ground truth of needle tip coordinates
(black line) from the robotics end effector in 15-degree as the initial angle in 9 different target points.

FIGURE 19. In the needle tip localization model with known initial angle experiment, the ground truth pathway (black line) is compared to the
estimated coordinates of the needle tip from the developed system (red marks).

separated into 3 rows and 7 columns, as shown in Fig. 10.409

The electronic wires passed through the holes behind the410

sensor sockets to the backside of the phantom. We generated411

8 target coordinates in orbital structure from the 8 positions412

of anatomical landmarks as the target command of the robot 413

arm (the exact command set with the experiment in the pre- 414

vious study [23]), as shown in Fig. 11. Besides, the motion 415

velocity was set as non-constant velocity due to human 416
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gesticulation [45], by integrating constant velocity and ran-417

dom acceleration (5 ± 2 mm/s). We registered all target418

positions with the same reference in the robot arm and set419

it as the origin. The robot arm respectively operated from420

points 1 to 8 and stopped at each point for 2 seconds. The421

state of the needle tip, which consisted of coordinates and ori-422

entation, was calculated by the sensing data. We measure the423

root mean square (RMS) of the Euclidean distance between424

all estimated needle tip coordinates with the target points to425

validate the system’s accuracy.426

VI. RESULTS427

A. MULTIPLE DIRECTIONAL APPROACH FOR428

MAGNETIZED NEEDLE CHARACTERIZATION429

The result shows that the variety of initiate angles influences430

sensing output. As can be observed from Fig. 12, the average431

value (red trick) of sensing data from the different initial432

angles at the same distance is almost the same, but there is433

a difference in SD (range of the box graph) of the sensing434

data. The SD of the sensing data decreases when the initial435

angle increases at the same distance from the origin. Besides,436

the SD also reduces when the needle tip is pointed far away437

from the sensor. On the other hand, it is found that the SD of438

observations at the same coordinate is significantly low com-439

pared to the mean of sensing value (P<0.05, n=20), as shown440

in Fig. 13. Fig. 14 illustrates that the SNR between sensing441

data and the coordinate of the needle tip is significantly low,442

particularly in distances (r) lower than 4.5 mm.443

According to Fig. 12, we applied the third polynomial444

regression between themean and distance of each initial angle445

in training sets to calculate the set of parameters in (11),446

as shown in Table 1. Moreover, we applied the sensing data447

of each coordinate with the threshold classification filter as448

in (5) with T equal to 4. The result illustrates that the changes449

in the initiate angle contort the detecting area of the system,450

as shown in Fig. 15. The initiate angle also affects the transfer451

function between sensing data and the captured needle tip452

coordinates.453

B. MULTI-MODEL PREDICTION AND LOCALIZATION WITH454

HALL EFFECT SENSOR ARRAY455

The output states of the magnetized needle were compared456

to the ground truth from the robotics system, as shown in457

Fig. 16. We calculated the Euclidean distance between the458

position feedback from the robot arm and the calculated459

position at the same time frame (k). The position feedback460

from robot arm was plotted together with the Euclidean dis-461

tance error, as shown in Fig. 17. The result illustrated that462

the system has RMS error of Euclidean distance of around463

1.7398 ± 0.5288 mm (the maximum error less than 4 mm),464

depending on the distance of needle tip (r) and the number465

of activated sensors. Besides, the result shows that the z-axis466

primarily influences the error in the experiment. For instance,467

the second graph in Fig. 17 shows a significant increase in468

the error when the needle tip is raised in the z-axis (after469

FIGURE 20. The practicing day of trainee medical doctor (1st year) with
the developed EATS model.

40 samples). On the other hand, the X and Y axis motion 470

has a lessened effect on the Euclidean distance error. Fur- 471

ther investigation on the results shows that the error in the 472

localization systemwas accumulated over the increasing time 473

frames, as in Fig. 17 and 18, which is the common problem 474

in EKF system. Moreover, there is no remarkable error from 475

the different initial angles as shown in Fig. 17. 476

C. ACCURACY OF THE DEVELOPED SYSTEM 477

The reference coordinate was registered to the phantom posi- 478

tion as the origin of the validation system. The experiment 479

was repeated 10 times with the same target sequence (1 to 8). 480

The output state was calculated 2 times in each step. The 481

estimated coordinates were compared with the target points 482

as shown in Fig. 19. We calculate the Euclidean distance 483

between target points and estimated coordinates. Besides, all 484

errors in the x, y, and z axis were recorded as in Table 2. The 485

RMS error of the Euclidean distance involved describing the 486

accuracy of the system. The result illustrates that the system 487

has accuracy of around 1.958± 1.060mmwith the maximum 488

error in z-axis around (4.5739 mm). 489

VII. CONCLUSION AND DISCUSSIONS 490

In the first experiment, the result illustrated that themaximum 491

detection area of the sensor is around 13.5 mm, which is 492

similar to the output from previous studies. The change in 493

the sensor model enhances the detected resolution between 494
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the magnetic field and sensing data, while detection space495

remains the same. The difference in the sensing model496

provides a more accurate needle position. The SD in each497

coordinate denotes that the T system has an acceptable signal-498

to-noise ratio from the new sensor (P< 0.05). Consequently,499

the initial angle of the needle affects the shape of detection500

and the initial transfer function (f) as shown in Fig. 15. The501

magnetic field strength is still related mainly to the angle and502

distance between the needle and sensor.503

The second experiment shows an increase in precision504

compared to the previous studies with the same initial angle.505

We found that the development in the variety of the obser-506

vation model can enhance the system accuracy of the prior507

research (1.80+− 0.8370 mm) to 1.7398± 0.5288 mm. The508

system that employs the pathway localization method shows509

the capability to track the needle tip with the constant velocity510

in real-time with an acceptable error. Moreover, the system511

can use the training set from the first experiment to classify512

the initial angle by MSL and LSQ.513

After the integration of the system with the orbital phan-514

tom, there was an increase in the error of needle tip esti-515

mation from 1.7398 ± 0.5288 to 1.958 ± 1.060 mm. This516

error was caused by the mismatch between sensor states and517

actual positions in the orbital structure, affecting the LSQ for518

model selection. The other source of error was caused by the519

non-constant velocity of the robot arm, which is crucial in520

reducing the EKF algorithm’s accuracy. The result denoted521

that the x and y-axis error is comparatively lower, maximizing522

at 3.4mm compared to 4.5mm of the z-axis. The occurred523

errors are also dependent on the position of detection. The524

error margin rises significantly when the needle tip position525

reaches the edge of the workspace. For instance, in target526

positions 1, 3, 5 and 6, the RMS error increases over 2 mm.527

The orientation of the sensor affects the accuracy of the528

system. In target point number 6, the primary activated sensor529

is not parallel to the orbital skull, inducing more errors in530

the z-axis. However, the system error is smaller than the531

significant structure in Ophthalmic anatomies.532
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