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Abstract—Path planning strategies exist today for producing
trajectories in Unmanned ground vehicles (UGV) that incorpo-
rate various navigation concerns, such as 3D navigation, obstacle
avoidance, and path re-planning. These path generators mostly
depend on the dynamics of the UGV’s position and orientation.
However, one significant issue with these methods is that it ignores
the relationship between the path planning task and the energy
consumption associated with battery performance. This paper
presents a path planning algorithm for multiple unmanned robots
that take into account battery performance. Subsequently, using
the optimal trajectory of each robot within a multi-robot system
and monitoring the battery state of each robot, an algorithm
for determining the suitable robot for the instantaneous task
during rescue operations is proposed. The simulation results show
that the proposed energy optimization algorithm can be used to
predict the energy consumption of the mobile robot maneuvering
processes, in addition, to efficiently supporting to make decisions
for mobile robots in rescue operations.

Index Terms—Unmanned tracked vehicle; Tracked vehicle
dynamics; Battery management; Mobile autonomous robots

I. INTRODUCTION

To create trajectories for UGVs that take into consideration
diverse navigation challenges, such as 3D navigation, obstacle
avoidance, and path re-planning, there have been impressive
path planning algorithms developed. [12, 3, 14]. Such path
generators are mostly based on the dynamics of the position
and orientation of the UGVs. However, one of the main
limitations of such methods is that they will not account
for the relationship between path planning and robot energy
consumption during missions. On account of limited battery
backup on autonomous UGVs, the power supply of the robot
has an impact on its performance and can cause the robot
to stop in the middle of a mission. This failure has a direct
impact on the specified task and/or success of the mission. To
overcome this situation is to identify the energy consumption
of each part individually and estimate and compensate for the
power consumption.

Recent studies have succeeded in achieving the goal of
saving energy through trajectory optimization [13, 6]. Since
in rescue operations, robots must be able to function au-
tonomously/ semi-autonomously or with minimal human inter-
action in potentially hazardous and dangerous environments.
One of the major limitations of the studies that are mentioned
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above is that they fail to account for the relationship between
the battery backup and the path of the robot [12, 3, 13, 6]. It is
essential that robots use minimum energy in rescue operations.
When multiple robots work together in rescue operations, they
engage in their work in different positions. In this scenario,
the selection of an appropriate robot for the instantaneous
task is critical. Selecting such a robot from different positions
depends on the time it takes to reach the goal, battery backup,
and trajectory to the target.

In rescue operations, there are situations where the robot
with the shortest path has insufficient enough battery life to
complete the task, and also the robot with the most battery
backup may not have the shortest path. In this situation, an
algorithm is required to determine which robot is appropriate
depending on its path and battery backup. In this paper, the
authors propose an algorithm to determine the most appropri-
ate robot based on calculating the robot’s energy consumption,
and trajectory from the robots distributed at various locations.

II. METHODOLOGY

To improve the energy efficiency of the mobile robots in
the rescue operation, a proper robust algorithm is necessary
to calculate and predict energy consumption before making
the decision, to enable energy-efficient strategies. To estimate
the energy consumption of a mobile robot, three major factors
must be considered: the motion system, the sensor system, and
the control system [4]. The speed of the robots affects all of
these systems both directly and indirectly.

The algorithm starts with collecting the real-time battery
status data, including the battery capacity. In parallel, the
mapping technique is implemented for each robot to fore-
cast the shortest path, estimating the kinetic energy, energy
consumption of the sensor system, and friction loss from the
velocity of the robots for accomplishing the mission. And these
data sets for the robots will be collected with the help of static
and moving obstacles to estimate the shortest path because it
depends on the position of the obstacles. Furthermore, by using
this information, optimal path, and optimal energy path are
predicted individually for all the mission robots. This allows
for the calculation of each efficiency parameter of the robot.
Additionally, it will determine the most appropriate robot for
an unexpected task from other robots in different locations.
The overview of the algorithm is illustrated in Fig.1.

The majority of the aforementioned trajectory generation
algorithms determine only the shortest path, however, this
does not necessarily mean that it is the best energy-efficient
path for the robot. In order to optimize the path with regard
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Fig. 1. Planning Framework

to energy and time, it is necessary to determine the overall
energy consumption and losses throughout each operation.
Additionally, it will also address the issues of path planning
and identifying the proper robot. To do this, we need to
evaluate the amount of energy utilized for the individual robots
during the mission.

A. Energy Consumption Model

The power consumption of a rescue robot is an important
factor that determines how much power is required during the
mission; this will influence battery selection and specifics of
battery management tactics. [11]. It is feasible to calculate the
total power consumption of the robot by taking into account
the power consumption of each electrical component. The total
energy consumed by the robot is defined in equation (1)

ETotal = Es + Ek + Ef + Ee + Eg (1)

Where Es , Ek , Ef , Ee , and Eg represent energy con-
sumption by sensors, robot motion energy, friction energy
losses, heat in the armatures of motors losses, and gear energy
losses, respectively. The most energy-intensive components are
motors, sensors, microcontrollers, and embedded computers
[11]. The power consumption of these components could
be estimated using power models [9]. Mechanical power is
the sum of each actuator’s torque and the motors’ rotational
angular velocity. As a result, the energy optimization problem
has been transformed into a trajectory optimization problem
[8]. From equation (1), the energy consumption of the mobile
robot is divided into two parts: the sensors system, and the
motion system.

1) Energy Consumption of the Sensor System: According
to Huang, Jun S., et al., 2020 [4] the energy consumption of
the sensor system is fairly constant. As a result, the electrical
energy consumption (equation (2)) can be represented as

Es = Ps × dt (2)

Where, Ps is the electrical power of the sensor system.
In addition, the net energy consumption of the sensor is
proportional to the speed of the robot [4]. So that, if Vmax is
the maximum speed of the robot then,

Es =
1

Vmax

∫
(v ∗ Ps)dt (3)

2) Energy Consumption of the Motion System: Concerning
the motion system, the energy consumed to attain and sustain
robotic motion can be written as,

Emotion = Ek + Ef + Ee + Eg (4)

Let Ek denote the kinetic energy of the robot, Mr denotes
the mass of the robot and v represents the current moment
speed of the robot, then

Ek = Mr ∗
v2

2
(5)

If µ is the friction coefficient between the wheel and the
ground, then the equation (6) shows the friction dissipation
during the movement of the robot is

Ef =

∫
(µ ∗Mr ∗ v)dt (6)

In this study, we considered only the parameters Ef , EK , ES

and because of their nonlinearity Ee and Eg are not included
in this study as they require more attention and are being
considered for future study.

III. IMPLEMENTATION OF ALGORITHM

A. Dynamic Window Algorithm motion planning

Obstacle avoidance is a basic prerequisite for autonomous
robots to move safely and perform tasks. [10]. The dynamic
window approach (DWA) [1], unlike other avoidance ap-
proaches, is derived directly from the robot’s dynamics and
is specifically designed to deal with the constraints given by
the robot’s limited velocities and accelerations [7]. This is
a velocity-based local planner that calculates a robot’s ideal
collision-free velocity for reaching its target. It converts a
Cartesian goal (x , y) for a mobile robot into a velocity (v , ω)
instruction. There are two main objectives to determine a valid
velocity search space and to choose the best velocity. Given
the set of velocities the robot can achieve in the next time
slice provided its dynamics (’dynamic window’), the search
space is created from the set of velocities, that produce a safe
trajectory (i.e. allow the robot to stop before the collision). If v
is the heading velocity and ω is the rotational velocity. Then, in
order to prevent colliding with obstacles, a permissible speed
set is determined [7] as follows:

Va = {(v, ω)|v ≤
√
2dist(v, ω)v̇b ∧ ω ≤

√
2dist(v, ω)ω̇b}

(7)
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where dist(v, ω) is the shortest distance between the robot and
the obstacle, and vb and ωb are the breakage accelerations.
When the motors’ accelerations are constrained, the entire
search can be reduced into a dynamic window that only
includes velocities that can be reached within the next time
interval. The dynamic window Vd has the following definition
[7]:

Vd = {(v, ω)|v ∈ [va − v̇t, va + v̇t]∧ω ∈ [ωa − ω̇t, ωa + ω̇t]}
(8)

where (va ,wa) is the actual velocity and t is the time
interval during which v and w are applied. There are some
scenarios where the Euclidean distance is insufficient to mea-
sure the actual distance traveled. [5]. Let x and y denote the
Euclidean distance between two robots on the x- and y-axes.
Then a robot’s front view distance DS of a distant object is a
Finsler distance provided by [5]

DS = x4 + y4 (9)

It is the hypotenuse of formalized flying triangulation. The
side view distance DB from a robot on a nearby object moving
in a diagonal saddle is calculated as follows:

DB = x2y2 (10)

This is one of the right-angle edges. The variable then
determines the distance between two moving robots. There
is an aggregated measure f-norm called sum (AV ) on a finite
Finsler real manifold, where AV stands for Area Variable, a
positive real number generated by a pair of neighbor points
coordinate:

AV =

√
DS −DB

2
(11)

We made a simulation study on MATLAB (Mathworks
Inc., USA). So as per the algorithm, the real-time battery
state (Remaining energy) and optimum path of the individ-
ual mission robots will be estimated. From the trajectories
of individual robots, it can identify which robot has the
shortest trajectory. For the instantaneous operation identifying
the proper robot depends not only on the trajectory of the
robot but also on the energy consumption. Also, the closest
Eucleadian distance of the robots to the target will not be
easily achievable because of the obstacles around the robots.
So, in order to avoid the obstacles robots need to consume
so much energy. A robot must not only detect obstacles but
also recalculate the detouring path and steer itself toward a
safe and efficient path in real-time in order to avoid collision
with them. When obstacles are in the path, the travel distance
and time will increase as the robot spends more time and
distance turning around the obstacles and avoiding collisions.
It will result in motions depending on the sensing capabilities
and the actual position of the mobile robot [2]. To do so,
information from various sensors is received and integrated in
order to determine the location of the robot, detect obstacles,
and prevent collisions. To complete these tasks, the robot will

require a better sensory system, a strong mechanical structure,
and a reliable control system. As a result, more energy will
be expended.

Secondly, the simulation will give the fastest robot (the
robot that reaches the target first) and the value of the
efficiency parameter can be calculated based on each robot
that reaches the target. Let the real-time battery status of the
individual mission robots is Ebi, the total energy consumption
during the motion is Emotion, and the energy consumption of
the sensor system is Es, then the efficiency parameter:

Ki =
Ebi

Emotion + Es
(12)

The value of K can determine the most appropriate robot
for assigning an instantaneous task during the rescue operation
since the robots are distributed in different locations as men-
tioned above. From equation (12), the robot with a maximum
value of K is the most suitable one; since the robot with
the shortest trajectory does not necessarily have to satisfy the
battery requirements of the task. Similarly, the path taken by
the robot with the biggest battery backup is not the shortest.
Likewise, the path of the robot with the largest battery backup
will not be the shortest. A detailed description of the algorithm
is represented in Figure. 2. A robot with maximum energy
backup and with the least energy consumption will be the
most eligible.

IV. ALGORITHM EVALUATION AND RESULT ANALYSIS

The energy-optimized path planning and decision-making
for multiple robots in the rescue operations method are tested
here. It is used to evaluate and predict energy consumption
and to provide a reference to avoid task interruption due to
lack of energy. To validate this algorithm with simulation, we
considered five similar robots distributed in different locations
(Euclidian distances to the robots are different), and the battery
state (battery backup) of the individual robots is considered
constant and equal. The robot is then allowed to travel from
different positions with the same friction coefficient. This
path of each robot was generated using the Dynamic window
approach. The maximum speed of all the robots is the same,
but the number of obstacles that each robot must overcome
is different. In the moving obstacle scenario, all the obstacles
are moving at random velocity. Then we evaluated the energy
consumption of each robot with the help of its velocity and
meanwhile, it calculated the time for completing the task of
each robot.

From the Figure. 3, we can see that all the robots are
distributed in different positions, the horizontal and vertical
axis describes the position of the robot and the blue squares
represents the robot. Even if the goal (Red triangle) is the
same, they have to overcome many moving and stable obsta-
cles denoted by the black circles. And Figure. 4, 5, 6, and 7
denotes the kinetic energy, frictional loss, energy consumption
of the sensor systems, and total energy used by the robots
during the motion represented, respectively. In each figure,
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Fig. 2. Planning Framework

Fig. 3. The trajectory of robots through static obstacles

Fig. 4. The kinetic energy of the robots

Fig. 5. The frictional loss of the robots

Fig. 6. Energy Consumption of the Sensor System
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Fig. 7. The total energy used by the robots during the motion

Fig. 8. The trajectory of robots through moving obstacles.

Fig. 9. The kinetic energy of the robots

Fig. 10. The frictional loss of the robots

Fig. 11. Energy Consumption of the Sensor System

Fig. 12. The total energy used by the robots during the motion

the horizontal axis describes time, while the vertical axis
highlights the energy consumed by each robot.

In the simulation Robot-1 reaches the target position firstly,
then Robot-3, Robot-4, Robot-2, and Robot-5 reached the
target respectively. But Robot-1consumes more energy than
other robots, since it has fewer obstacles it was at maximum
speed so it used maximum energy to reach the target. As
mentioned earlier, the Dynamic-Window algorithm determines
only the shortest path, however, this does not indicate that
this path is the most energy-efficient. So, in order to avoid
the obstacles robots need to consume so much energy and
time. In the case of Robot-2, the linear distance to the target
was shorter than other robots, but it only reached the fourth
position, and Robot-5 was the last to arrive, taking a maximum
of 299.96 seconds, and consuming as much energy as Robot-1.
If Robot-3 consumes less power than Robot-1 and the battery
backup of Robot-3 is higher than that of Robot-1, then it will
be the most suitable robot for the task. From the figure, we can
see Robot-3 consumed less energy than Robot-1 and arrived
at the second position. But in the actual case, all robots will
have different battery backups, which has to be considered
important.

When considering the second scenario, where all the robots
are maneuvering through moving obstacles( It is shown from
Figure. 8 to Figure. 12). In the simulation, Robot-3 reaches
the target position first, followed by Robot-2, Robot-1, Robot-
4, and Robot-5 reach the target respectively. But Robot-3
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consumes more energy than other robots as mentioned above.
Since it has fewer obstacles, it was at maximum speed so
it used maximum energy to reach the target. Even the linear
distance to the target of the Robot-2 was shorter than other
robots, but it was only able to reach second place. But in
the midst of so many repetitions of the simulation, it got
other positions. The last to arrive was Robot-5, which took
the maximum amount of time (265.41 seconds) and expended
the same amount of energy as Robot-3.

In the case of moving obstacles, the same robot will not
be the first to arrive for every iteration, because its path
is often created differently. Since their battery backup is a
critical factor, it’s important to know how much less power
the arriver is using. But the simulations showed that the
algorithm described here is feasible and effective. However,
the experiments were carried out on a 2-D plane surface. The
operation of a robot demands accelerating, stopping, turning,
slowing down, moving uphill and downhill, and so on, all of
which are not fully covered by the proposed simulation. And
the time taken for simulation is also a concern, especially in
moving obstacle scenarios. As a result, future studies should
focus on completing the model based on all robot actions, and
employ a better and more comprehensive experimental field.
Moreover, the energy-optimized path planning and decision-
making model is very important and is valid for the decision-
making of autonomous rescue operations.

V. CONCLUSION

This study considered the challenges of decision-making
and motion planning for multiple autonomous mobile robots
in rescue operations, with the objective of energy optimization.
An algorithm is developed to calculate and predict energy
consumption before making a decision in order to improve
the energy efficiency of a mobile robot in a rescue mission,
which gives a solution to enable energy-efficient tactics. Four
key components were addressed while evaluating the energy
consumption of a mobile robot: the mobility system, the sensor
system, the control system, and the trajectory of the robot. The
results of the simulations indicate that the suggested energy
model can be employed to estimate the energy consumption of
robot rescue operations as well as can efficiently support the
analysis of mobile robot energy consumption properties. The
presented path planning algorithm can determine the suitable
robot for the instantaneous task during rescue operations
using the optimal trajectory of each robot with respect to
the battery backup within a multi-robot system. Although all
the operations of a robot are not entirely covered by the
proposed simulation, it is still valid for the decision-making of
autonomous rescue operations. Consequently, further research
should aim to complete the model according to all robot
actions and terrain.
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