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Abstract—In this paper we present a new, and extremely fast, algorithm for the inverse kinematics of
discretely actuated manipulator arms with many degrees of freedom. Our only assumption is that the
arm is macroscopicallyserial in structure, meaning that the overall structure is a serial cascade of units
with each unit having either a serial or parallel kinematic structure. Our algorithm builds on previous
works in which the authors and coworkers have used the workspace density function in a breadth-
� rst search for solving the inverse kinematics problem. The novelty of the method presented here is
that only the ‘mean’ of this workspace density function is used. Hence the requirement of storing a
sampled version of the workspace density function (which is a function on a six-dimensional space
in the case of a spatial manipulator) is circumvented. We illustrate the technique with both planar
revolute and variable-geometry-trussmanipulators, and brie� y describe a new manipulator design for
which this algorithm is applicable.

Keywords: Inverse kinematics; discrete actuation; rigid-body motion; probability density function;
statistics; groups.

1. INTRODUCTION

In this section we present a brief introduction to our method and review the
literature.

1.1. Overview of our approach

In this paper we present a new algorithm for the inverse kinematics of discretely
actuated manipulator arms with many degrees of freedom. Our approach is
extremely fast and requires minimal data storage. Our only assumption is that
the discretely actuated arm is macroscopically serial in structure, meaning that the
overall structure is a serial cascade of units with each unit having either a serial
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or parallel kinematic structure. Our algorithm builds on previous works in which
the authors and coworkers have used the workspace density function in a breadth-
� rst search for solving the inverse kinematics problem. The workspace density
function is a probability density function (pdf) on the group of rigid-body motions
(this group is often called SE.3/ in the robotics literature [1, 2]). The workspace
density is an important quantity in the design and motion planning of discretely
actuated manipulators in analogy with the way dexterity measures are used in the
context of continuous-motion manipulators. See [3–6] for discussions of dexterity
measures.

The novelty of the method presented here is that only the ‘mean’ of this workspace
density function is stored and used. This leads to a tremendous reduction in the
amount of data that needs to be stored. However, in order to fully understand our
method, knowledge of some de� nitions used in the � eld of probability and statics on
groups such as the mean and variance of pdfs is required (see, e.g. [7]). We therefore
review these de� nitions in this paper and perform concrete statistical calculations
that we believe to be new.

1.2. Literature review

The concept of discretely actuated manipulators is quite old in the literature.
A planar serial revolute ‘digital manipulator’ is discussed in Pieper’s classic thesis
from 1968 [8]. In another classic paper, Roth et al. discuss a three-dimensional
(3D) digital manipulator actuated with in� atable airbags [9]. In the mid 1980s,
discretely actuated manipulator arms were developed in the former Soviet Union
by Koliskor [10]. In fact, a low degree-of-freedom discrete-state robot has been
sold by Seiko for pick-and-place tasks [11]. Closely related to the concept of a
discretely actuated manipulator is the idea of sampling a continuous-motion robot
at discrete values. This has been done to analyze the error in robotic mechanisms
and to generate their workspaces using the Monte Carlo method. See, e.g. [12, 13].

Since the mid 1990s Chirikjian and coworkers have developed a variety of
ef� cient algorithms for highly actuated discrete-state robots and mechanisms. These
include approaches to the kinematic synthesis of such mechanisms [14–17], the
generation of workspaces [18, 19] and inverse kinematics [20–25]. Figure 1 shows
a 3D discrete-state manipulator arm with 236 states. This arm consists of six
Stewart /Gough platforms actuated with pneumatic cylinders. This type of arm (or
even one with twice as many actuators and 272 states) provides motivation for our
exploration of ef� cient inverse kinematics algorithms.

In the subsequent sections of this paper, we present a new approach to the inverse
kinematics of discrete-state manipulators. Section 2 reviews and extends the Ebert-
Uphoff algorithm presented in [25]. Our new algorithm builds on this. Since our
algorithm relies on probability theory, we review concepts of basic probability in
Section 3 and present some new results in probability theory applied to the group of
rigid-body motions in Section 4. We then use these ideas to formulate our algorithm
in Section 5 and illustrate our algorithm with numerical examples in Section 6.
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Figure 1. A 236-state hybrid serial–parallel manipulator arm.

2. INVERSE KINEMATICS OF BINARY MANIPULATORS: THE EXTENDED
EBERT-UPHOFF ALGORITHM

In this section we review and reformulate an algorithm that was presented in
[25] for solving the positional inverse kinematics problem for discretely actuated
manipulators, and extend it to the combined positional and orientational problem.

Suppose it were possible to explicitly enumerate all possible end positions and
orientations reachable by a discretely actuated manipulator arm. This � nite set of
frames could then be approximated as a histogram on the 6D space of positions
and orientations. This space is simply SE.3/, the group of rigid-body motions.
Likewise, the group of rigid-body motions of the plane is called SE.2/.

Let an arbitrary element of SE.3/ be denoted as:

g D
³

A a
0T 1

´
; (1)

where A is a 3 £ 3 rotation matrix (element of SO.3/) and a 2 R3 is a translation
in 3D space. Then we can describe a normalized histogram as a pdf on SE.3/.
Henceforth we use the notations G and SE.3/ interchangeably (G standing for
‘group’ ). In general, a pdf on a group satis� es the conditions ½.g/ > 0 and:

Z

G

½.g/ dg D 1; (2)

for an appropriate integration measure dg. In the case of SE.3/, dg D dAda where
da D da1da2da3 and dA D sin ¯d®d¯d° when ZXZ Euler angles are used to
parameterize rotations. That is, the form of dA depends on the parameterization
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used in much the same way that da would appear differently if polar or spherical
coordinates were used. Explicity, (2) is written as:

Z 1

a3D¡1

Z 1

a2D¡1

Z 1

a1D¡1

Z 2¼

° D0

Z ¼

¯D0

Z 2¼

®D0
½.®; ¯; ° ; a1; a2; a3/

£ sin ¯ d® d¯ d° da1 da2 da3 D 1:

If the manipulator consists of P not-necessarily-identical modules, we denote the
pdf for the whole manipulator as ½0;P .g/. We denote the pdf for the ith module
simply as ½i¡1;i. It was shown in [19] that the pdf for two concatenated modules
can be found as the convolution:

½i¡1;iC1.g/ D .½i¡1;i ¤ ½i;iC1/.g/
4D

Z

G

½i¡1;i.h/½i;iC1.h
¡1 ± g/ dh:

By the same reasoning, it follows that the pdf for the whole manipulator can be
found as:

½0;P .g/ D .½0;1 ¤ ½1;2 ¤ ¢ ¢ ¢ ¤ ½P ¡1;P /.g/:

The concept of the manipulator workspace density functions ½i;j .g/ for i < j is
useful in solving the inverse kinematics problem for discretely actuated manipula-
tors with many states [25, 16]. If one were to try to solve the inverse kinematics
problem by evaluating the manipulator forward kinematics for a concatenation of P

identical modules each with K states, the computational cost of explicitly search-
ing KP possibilities would be prohibitive. If we have a cascade of manipulator
workspace density functions corresponding to each of the P modules of the manip-
ulator, this exponential complexity can be reduced to a problem that is linear in P .

Now for k 2 f1; : : : ; P g, let gk be the transformation that relates the distal end of
the kth segment to its base for a given con� guration of the module. The position of
the top of the kth segment relative to the base of the manipulator is then:

g.k/ D g1 ± g2 ± ¢ ¢ ¢ ± gk;

and the position and orientation of the distal end of the manipulator relative to the
distal end of the kth segment is

.g.k//¡1 ± g.P / D gkC1 ± gkC2 ± ¢ ¢ ¢ ± gP :

There are K possible states for each gk . Using the information in the cascade of
density functions ½P ¡1;P ; : : : ; ½1;P , we can sequentially choose states of each sec-
tion which, at each instant, maximize the probability density around the particular
frame of reference that we seek to reach.

In other words, given that we want the end of the manipulator to reach gdes 2 G,
we start at the base of the manipulator and ask which state of segment 1 maximizes
½1;P ..g.1//¡1 ± gdes/. After searching through all K possible values of g1 and the
optimal g.1/ D g1 is � xed, we proceed up the manipulator one unit. That is, we
next calculate ½2;P ..g.2//¡1 ± gdes/. Since g1 is � xed, K values of g.2/ D g1 ± g2 are
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searched until the value of g2 that maximizes is found. This procedure is performed
by sequentially maximizing ½k;P ..g.k//¡1 ±gdes/ for all k 2 f1; 2; : : : ; P ¡1g: When
k D P , the one out of K values of gP that minimizes the cost function

C D D.gdes; g1 ± g2 ± ¢ ¢ ¢ ± gP /;

is chosen where D.¢; ¢/ is a distance metric. Such metrics for rigid-body motions
have been discussed in [26–30].

The procedure we have described here is a way of specifying a state of the whole
manipulator in O.P / arithmetic operations such that the distal end reaches gdes

approximately. The spirit of this algorithm is the same as that presented in [25],
though the use of SE.3/ distance metrics and other group-theoretic features allows
us to consider the full position-orientation inverse kinematics problem rather than
the pure position problem. Hence, we call this the extended Ebert-Uphoff algorithm.

3. REVIEW OF BASIC PROBABILITY

One drawback of the algorithm described in the previous section is that it requires
us to store ½k;P .g/ for k D 0; : : : ; P ¡ 1. Each of these is a function on a 6D
space, which means that even though the algorithm is very fast, a tremendous
amount of data must be stored. For instance, if G is sampled at 100 values in
each parameter, P £ 1012 numbers must be stored. This has lead us to consider a
modi� cation of the extended Ebert-Uphoff algorithm in which only the mean values
of the pdfs ½k;P .g/ for k D 0; : : : ; P ¡ 1 need be stored. That is, we store only
P homogeneous transforms. The dif� culty comes in � nding a correct and useful
de� nition of the mean value of a function on a group. We do this in the next section,
and present background here that enables that formulation to make sense to non-
mathematicians.

Given a pdf with a real argument, ½.x/, the classical apparatus of probability
theory is used to analyze ½.x/ in terms of its moments. The expected value is the
center of mass, or mean, E.x/ D xcm de� ned as the solution of:

Z

R

.x ¡ xcm/½.x/ dx D 0:

The nth moments about the expected value E.x/ D xcm for all integers n > 0 are
given by:

Mn D
Z

R

.x ¡ xcm/n½.x/ dx:

M0 D 1 is the ‘mass’ of the pdf and M1 D 0 by de� nition. M2 D ¾ 2 is the variance,
where ¾ is the standard deviation. Knowing all of the moments from n D 2; : : : ; N

for some � nite N means that the important properties of the distribution ½.x/ are
known to some degree without regard to all of its details. As N ! 1, the properties
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of ½.x/ become more determined as more of the moments are known. Usually only
the � rst few moments are of concern.

It is easy to show by direct calculation that E.x/ D xcm may be calculated as the
value of y which minimizes the functional:

C.y/ D
Z

R

.x ¡ y/2½.x/ dx: (3)

Hence, the value of y that minimizes C.y/ is the mean and C.xcm/, the function C

evaluated at the mean, is the variance.
The moments of pdfs have nice properties under the operation of convolution.

Recall that on the line:

.½1 ¤ ½2/.x/ D
Z 1

¡1
½1.»/½2.x ¡ »/ d» :

Since ½1.x/ > 0 for all x 2 R, it follows from a change of variables z D x ¡ » that
the mass of the convolution of two pdfs is unity:

Z 1

¡1
.½1 ¤ ½2/.x/ dx D

³Z 1

¡1
½1.» / d»

´³Z 1

¡1
½2.z/ dz

´
D 1 ¢ 1 D 1: (4)

That is, the convolution of two pdfs results in a pdf. Similarly, one has that the
higher moments of convolutions of pdfs can be generated from the moments of the
pdfs being convolved:

x1¤2
cm D

Z 1

¡1
x .½1 ¤½2/.x/ dx D

Z 1

¡1
x½1.x/ dx C

Z 1

¡1
x½2.x/ dx D x1

cm Cx2
cm; (5)

and

.¾ 2/1¤2 D
Z 1

¡1
.x ¡ x1¤2

cm /2.½1 ¤ ½2/.x/ dx

D
Z 1

¡1
.x ¡ x1

cm/2½1.x/ dx C
Z 1

¡1
.x ¡ x2

cm/2½2.x/ dx

D .¾ 2/1 C .¾ 2/2: (6)

As with (4), we � nd (5) and (6) by substituting z D x ¡ » and using the invariance
of integration under shifts.

4. MEAN AND VARIANCE FOR SO .N / AND SE . N /

We now demonstrate the de� nitions of mean and variance in the context of G D
SE.N/ for N D 2 and 3. For SE.N/ there are a variety of metrics we can use (see,
e.g. [31], chapters 5 and 6). Here we use the metric:

D.g1; g2/ D
q

ka1 ¡ a2k2
2 C L2kA1 ¡ A2k2

2;
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where gi D .ai; Ai/ 2 SE.3/ and L 2 RC is a length scale to put orientational and
positional quantities in the same units. The mean of a pdf ½.g/ is then de� ned to be
the value gcm 2 G such that:

C.g/ D
Z

G

D2.g; h/½.h/ dh;

is minimized.
In the following subsections, we examine the explicit form of gcm for any given

pdf and show some interesting properties analogous to (5) and (6). Our approach
has some similarities with [32].

4.1. Explicit calculation for SO.N/

It may be shown that � nding gcm amounts to � nding an SO.N/ mean and an RN

mean. Since the RN case is what is addressed in classical probability and statistics,
we take some time here to consider the SO.N/ case. The two results are combined
in the next subsection.

Given a pdf ½ 2 L 2.SO.N//, our goal is to � nd A1 2 SO.N/ that minimizes the
function:

C.A1/ D
Z

SO.N/

kA1 ¡ A2k2
2½.A2/ dA2:

The constrained minimization problem of � nding this value of A1 (which de� nes
Acm ) is almost identical to the problem of � nding a rotation matrix that best � ts
two sets of corresponding points. Such problems have been studied extensively in
image analysis and computer vision [33–43], and spacecraft attitude determination
[44–49].

As it turns out, the answer to the constrained problem is to � rst minimize without
constraint and select the rotation matrix from the polar decomposition of the answer
to the unconstrained problem. It is this rotation that will be the solution to the
constrained problem. Explicitly, this means that we � rst compute:

M D
Z

SO.N/

A½.A/ dA:

The matrix M in general is not a rotation matrix even though A is. To get the closest
rotation to M (which happens to be the solution to the constrained minimization of
C.A/), we calculate

Acm D M.MT M/.¡1=2/: (7)

An interesting feature of this solution is that it has some similarities to the case of
the real line. For instance, if we have calculated M1 and M2 corresponding to pdfs
½1.A/ and ½2.A/, then:

A1¤2
cm D M1¤2.M

T
1¤2M1¤2/.¡1=2/;
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where

M1¤2 D M1M2:

Note, however, that for the 3D case:

A1¤2
cm 6D A1

cmA2
cm:

To see that this is true, we must use the invariance properties of the integration
measure dA. Namely:

Z

SO.N/

A.½1 ¤ ½2/.A/ dA D
Z

SO.N/

A

Z

SO.N/

½1.R/½2.R
T A/ dR dA;

can be rewritten using the change of variables Q D RT A as
Z

SO.N/

RQ

Z

SO.N/

½1.R/½2.Q/ dQ dR

D
³Z

SO.N/

R½1.R/ dR

´³Z

SO.N/

Q½2.Q/ dQ

´
D M1M2:

What this means is that we do not explicitly need to know .½1 ¤ ½2/.A/ to calculate
A1¤2

cm . The impact that this has on us being able to do inverse kinematics ef� ciently
is that we can calculate the orientational mean for each section of the manipulator
individually and circumvent the convolution procedure. This observation will be
used in the next section.

4.2. Explicit calculation for SE.2/ and SE.3/

The mean (expected value) associated with a pdf ½ 2 L 2.SE.N// is the pair
.acm; Acm/ 2 SE.N/ that minimizes the function:

C.a1; A1/ D
Z

RN

Z

SO.N/

fka1 ¡ a2k2
2 C LkA1 ¡ A2k2

2g½.a2; A2/ da2 dA2;

subject to the constraint that A1 2 SO.N/. The minimization with respect to a1

follows exactly like the case of a function on RN and we � nd the value to be

acm D
Z

RN

a2

³Z

SO.N/

½.a2; A2/ dA2

´
da2: (8)

In order to minimize with respect to A1, the results of the previous subsection
concerning SO.N/ exactly apply. The only difference is that now:

M D
Z

SO.N/

A

³Z

RN

½.a; A/ da
´

dA:

As with the case of SO.N/, we know of no closed-form solution for the
orientational means and variances of the convolution of two pdfs on SE.N/ in terms
of strictly the means and variances of the original pdfs (since we cannot recover M
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uniquely from Acm). However, we are able to write the translational mean of the
convolution of two pdfs in terms of the translational means of each pdf. In order to
see this, evaluate (8) with the pdf .½1 ¤ ½2/.a; A/. We denote the result as:

a1¤2
cm D

Z

RN

a

³Z

SO.N/

.½1 ¤ ½2/.a; A/ dA

´
da:

Substitution of the explicit form of .½1 ¤ ½2/.a; A/ into the above equation yields:

a1¤2
cm D

Z

RN

a
Z

SE.N/

½1.r; R/

³Z

SO.N/

½2.R¡1.a ¡ r/; R¡1A/ dA

´
dr dR da:

Due to the invariance of integration on SO.N/, we may simplify the quantity inside
the parenthesis by de� ning:

F2.a/
4D

Z

SO.N/

½2.a; A/ dA:

Making the substitution x D R¡1.a ¡ r/, we then have:

a1¤2
cm D

Z

SE.N/

Z

RN

.Rx C r/½1.r; R/F2.x/ dr dR dx:

Passing integrals through terms that are invariant under the integral and using the
fact that:

Z

SE.N/

½i.g/ dg D 1;

we � nd:

a1¤2
cm D a1

cm C M1a2
cm; (9)

where ai
cm is the translational part of the mean of ½i and

M1 D
Z

SO.N/

R

³Z

RN

½1.r; R/ dr

´
dR:

As an example of the usefulness of (9), consider the mean of the convolution of a
pdf ½.a; A/ with itself P times. If acm is the translational mean of ½.a; A/, then the
translational mean of .½ ¤ ½ ¤ ¢ ¢ ¢ ¤ ½/.a; A/ will be

a1¤¢¢¢¤P
cm D

³
1l- C

P ¡1X

kD1

Mk

´
acm:

However, since:
³

1l- C
P ¡1X

kD1

Mk

´¡
1l- ¡ M

¢
D

¡
1l- ¡ MP

¢
;
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it follows that if M has no eigenvalues equal to unity, then we can write:

a1¤ ¢¢¢ ¤P
cm D

¡
1l- ¡ M

¢¡1¡
1l- ¡ MP

¢
acm:

If all of the eigenvalues j¸i.M/j < 1, then as P ! 1 we have:

a1¤ ¢¢¢ ¤P !1
cm !

¡
1l- ¡ M

¢¡1
acm:

In other words, for such pdfs on SE.N/, after an in� nite number of convolutions,
the translational mean will remain � nite even though the translational mean of the
original PDF is not zero. This does not happen with pdfs on RN .

The results of this section (which we believe to be new) are used in the following
section in our new statistical inverse kinematics algorithm.

5. INVERSE KINEMATICS BY BREADTH-FIRST MATCHING OF THE MEAN
AND DESIRED POSE

In this section we introduce a new method for the inverse kinematics of discretely
actuated manipulators using the concept of the mean of a workspace density
function. The only stored information is ak

cm and Mk for k D 1; : : : ; P . From
this, we can easily calculate the mean of the workspace density of any subsection of
the manipulator.

Let gk¤¢¢¢¤P
cm denote the expected value of the workspace density function for the

segment of the manipulator consisting of the distal P ¡ k C 1 modules. Given that
we want the end of the manipulator to reach gdes 2 G, we start at the base of the
manipulator and ask which state of segment 1 minimizes D.g.1/ ± g2¤¢¢¢¤P

cm ; gdes/.
After searching through all K possible values of g1, and the optimal g.1/ D g1

is � xed, we proceed up the manipulator one unit. That is, we next minimize
D.g.2/ ±g3¤¢¢¢¤P

cm ; gdes/. Since g1 is � xed, K values of g.2/ D g1 ±g2 are searched until
the value of g2 that minimizes is found. This procedure is performed by sequentially
minimizing D.g.k/ ± g.kC1/¤¢¢¢¤P

cm ; gdes/ for all k 2 f1; 2; : : : ; P ¡ 1g: When we get to
k D P we seek gP such that D.g.P /; gdes/ is minimized. This algorithm is described
in the � owchart at the end of this section.

The motivation behind this algorithm is that by continually having the remaining
freedom of the manipulator try to put the expected value of the remaining density
over the desired position and orientation, the chances of hitting the goal are high.
Of course since in this algorithm we do not keep the whole workspace density
function but rather only one of its moments, we would expect to lose some of the
nice features of the extended Ebert-Uphoff algorithm. One clear example of this
is that if the workspace density function for any segment of the manipulator has
crescent-shaped support, then its mean value will be at a location with zero density.
This means that our method will necessarily fail for such manipulators. However,
if the workspace density functions for all segments of the manipulator have their
mean and mode (peak value) close to each other, we expect our method to work
well. This is illustrated in the next section with numerical examples.
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Algorithm Flowchart:

(1) Start.

(2) Input number of modules.

(3) Find and store the rotation matrices, position vectors and homogeneous
transform of the end effector for all possible con� gurations of one module.

(4) Find and store the ‘means’ of rotation matrices and position vector from all
possible con� gurations.

(5) Input the desired positions.

(6) Set a temporary homogeneous transform matrix for the end effector.

(7) Begin loop of the new inverse kinematics algorithm with breath-� rst search,
starting with an active module at the base of the manipulator.

(8) Compare and � nd the best con� guration of the active module (which gives the
shortest distance between the end effector and the desired position), using the
‘mean’ stored from (4) with the breath-� rst search algorithm.

(9) Store the selected con� guration of that active module.

(10) Move active module to the next module in the manipulator.

(11) If the active module is the second to last module or the last one then go to (12),
otherwise go back to (8).

(12) Find and store the best possible con� gurations for the last two modules (or last
module) which yields the shortest distance between the end effector and the
desired position, using all possible con� gurations with the breath-� rst search
algorithm.

(13) Use the stored con� gurations of each module to ef� ciently calculate the
forward kinematics for the manipulator.

(14) End.

6. NUMERICAL RESULTS

In this section, we report the results of the numerical simulations performed to
evaluate the algorithm presented in the previous section.

The accuracy in which a 10-link planar revolute manipulator with eight evenly-
spaced states can reach a set of randomly generated target positions is illustrated in
Fig. 2. The desired target position vectors under evaluation are:

Á 0:5000
0:5000

0

!
;

Á¡0:5405
0:5915

0

!
;

Á ¡0:3163
0:7277

0

!
;

Á 0:2000
¡0:2000

0

!

;

Á 0:8121
0:1720

0

!

;

Á ¡0:8600
¡0:0500

0

!

:
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Figure 2. Demonstration of our method with a planar revolute manipulator.

(a) (b)

Figure 3. Demonstration of our method with a planar VGT manipulator.

Where the asterisks ‘*’ represent the desired positions, pentagons ‘?’ represent
the end-effector positions and circles ‘±’ represent the joint positions. The base of
the manipulator is located at the coordinates .0; 0/.

The ability of a 10-module planar variable geometry truss (VGT) manipulator
with two different sets of leg lengths to reach the same set of random target positions
is shown in Fig. 3. Here the asterisks ‘*’ represent the desired positions and circles
‘±’ represent the end-effector positions. The base of the manipulator is located at
the coordinates .0; 0/.
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Figure 4. End-effector error and time to compute our method as a function of the number of modules
(for manipulators of the kind in Fig. 2).

Figure 5. End-effector error and time to compute our method as a function of the number of modules
(for manipulators of the kind in Fig. 3).

In Fig. 3a, the minimum and maximum manipulator lengths are .lmin; lmax/ D
.1; 1:5/. In Fig. 3b, the lengths are .lmin; lmax/ D .1; 1:7/. The reason for the poor
performance in Fig. 3a in contrast to the better performance in Fig. 3b is that the
pdfs for the manipulator in Fig. 3a have crescent-shaped support, whereas the arm
in Fig. 3b has the mean frame of its pdf in a heavily populated region of frames.

In Figs 4 and 5, we present the results of numerical studies where the number
of joints (or modules) in the two manipulator architectures considered above are
allowed to vary. As can be seen, for cases when the workspace density functions for
all sections of the manipulator have means in heavily populated regions of SE.2/,
the end-effector error (scaled by manipulator length) goes down with the number
of modules. In all cases, the time grows linearly in the number of modules. This
contrasts to the exponential growth in computation time that would be used for brute
force evaluation of all possible con� gurations of the arm and distance evaluation.

In Table 1, the values of the end-effector errors and time consumed which vary by
the leg length and the number of modules for a 10-module planar VGT manipulator



238 J. Suthakorn and G. S. Chirikjian

Table 1.
Numerical results of end-effector error and time in the VGT manipulator which vary by number of
modules and min–max manipulator length

Number of modules End-effector error Time

1 : 1.5 1 : 1.6 1 : 1.7 1 : 1.5 1 : 1.6 1 : 1.7

2 0.58460 0.47410 0.36968 0.02500 0.04650 0.05500
4 0.23020 0.13770 0.14992 0.05750 0.05800 0.05550
6 0.15050 0.10320 0.10449 0.06600 0.06850 0.06850
8 0.15680 0.12070 0.08209 0.07950 0.07700 0.07650

10 0.13780 0.11230 0.07522 0.08500 0.08800 0.08500
12 0.12290 0.09830 0.06551 0.09600 0.09350 0.09150
14 0.13130 0.09030 0.05106 0.10700 0.10450 0.10450
16 0.12300 0.08740 0.04923 0.12350 0.11300 0.12050
18 0.10020 0.07340 0.04129 0.14550 0.12650 0.12900
20 0.09320 0.06730 0.03669 0.13700 0.14200 0.14600
22 0.07710 0.06300 0.03221 0.16750 0.15900 0.14900
24 0.06910 0.05840 0.03017 0.17850 0.17600 0.17850
26 0.06110 0.05200 0.02830 0.19500 0.19500 0.20850
28 0.06100 0.05240 0.02596 0.21150 0.21400 0.21400
30 0.05690 0.04630 0.02330 0.23900 0.22800 0.23050

are shown. The simulations are implemented in Matlab on an IBM compatible
machine with an Intel Pentium III 733 MHz processor. Every value is an average
value over 50 samples.

7. DESIGN

The algorithm presented in this paper for inverse kinematics is applicable both in 2D
and 3D. In order to demonstrate inverse kinematics algorithms, we have built a full
size three-module prototype of a new 3D manipulator using two-state pneumatic
actuators. Furthermore, we have designed a new kind of discrete rotating joint
controlled by three binary actuators. We brie� y describe these designs below.

7.1. Design of a discrete rotating joint

We have designed a discrete rotating joint using three binary actuators to control
the orientation and direction. We use a set of three gears. Two of these gears are
mounted along with two rotary actuators on the base and the third is mounted on
the module that is rotated by this actuator. One of two rotary actuators is used as
a � uid-� lled damper in order to decrease speed and reduce vibration. A series of
holes aligned in a circular pattern on the module act as the position controller. While
the rotary actuators and gear set are in operation, we use a compact linear binary
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Figure 6. (Left) Rotary actuator comprised of a dashpot, linear actuator and gearset. (Right) A
circular set of holes on the adjacent (rotated) module.

actuator located between the base and rotor as the stopper. A cone shape is attached
to the tip of the actuator, which is inserted into each hole to stop the rotor. The base
and rotor are shown in Fig. 6.

7.2. Design of a new spatial binary-actuated manipulator

This design is in� uenced by the advantages and disadvantages of previously built
binary manipulators. The new design uses 3-bit planar binary VGT modules
stacked on top of each other with a discretely actuated rotating joint between each
module. Figure 7 illustrates some con� gurations of the new spatial binary-actuated
manipulator. The prototype consists of four 3-bit binary VGT modules with discrete
rotating joints between the modules. From a structural analysis of the manipulator,
we found that the module which is the closest to the base should have the largest
size. The following modules get smaller in size towards the end effector. We have
built a full size prototype using two-state pneumatic actuators. PC interfacing with
a relay switchboard triggers the solenoid valves and controls each actuator, and this
prototype is lightweight as illustrated in Fig. 8. In order to reduce the vibration
occurring due to the high speed of the pneumatic actuators, dashpots have to be
introduced in parallel with the actuators in each module.

8. EXPERIMENTS AND RESULTS

A 3-bit planar VGT module has eight (23 ) possible reachable points. Therefore, the
new discretely actuated manipulator can reach 2.3£N1/ £ .N2 £ N3/ points. N1 is
the number of 3-bit binary VGT modules, N2 is the number of rotating joints, and
N3 is the number of states in each joint. We have built and tested the prototype
manipulator. Although the load-bearing ability of the structure is a main concern
due to the capacity of the actuators, overall the experiments with the manipulator
were very successful.
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Figure 7. Con� gurations of the new spatial binary-actuatedmanipulator.

9. CONCLUSION

In this paper we presented a new technique for the inverse kinematics of highly
actuated manipulators with discrete states. The method is based on the sequential
minimization of a measure of distance between the mean of a workspace density
function and the desired position of the end effector. Numerical results illustrate the
usefulness of the method. We also describe a new design of a 3D discretely actuated
robot manipulator powered by binary actuators. An advantage of this design over
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Figure 8. The light weight of the new manipulator is illustrated in comparison with traditional
manipulators.

traditional manipulators is its light weight. Our further experiments will involve
implementation of the inverse kinematics algorithm presented in this paper with
this new manipulator.
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