
Results in Physics 51 (2023) 106746

Available online 13 July 2023
2211-3797/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A generalized closed-form solution for 3D registration of two-point sets 
under isotropic and anisotropic scaling 

Maria Chatrasingh a, Cholatip Wiratkapun b, Jackrit Suthakorn a,* 

a Department of Biomedical Engineering, Center for Biomedical and Robotics Technology, Faculty of Engineering, Mahidol University, Salaya, Thailand 
b Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Thailand   

A R T I C L E  I N F O   

Keywords: 
Anisotropic Scaling 
Non-uniform scaling 
Point set registration 
3D registration 
Ultrasound images 

A B S T R A C T   

Fitting of two-point sets under non-uniform scaling involves several applications, including ultrasound-guided 
surgery, where ultrasound images generally show anisotropy between its lateral and depth resolution. Howev-
er, the current state-of-the-art only accomplishes the closed-form solution under the assumption of isotropic 
scaling, and only the iterative form of the solution is available for registration regardless of scaling type. A 
generalized closed-form solution, including anisotropic scaling, could robust the computation in the applications 
of multi-modality image fusion and surgical navigation based on ultrasound images. In this paper, a generalized 
closed-form solution (GCFS) that accounts for isotropic scaling and anisotropic scaling is proposed. GCFS finds 
the least-squares solution of rotation, translation, and scaling based on the singular value decomposition (SVD). 
The method was demonstrated to 1) register two 3D point sets under the effect of anisotropic scaling and 2) 
register two coplanar 3D point sets under the effect of anisotropic scaling. This study evaluates 3D registration 
between the preoperative model and intraoperative ultrasonic scanning of a femur and 2D registration of ul-
trasound images to the phantom for ultrasound calibration. In addition, the conditions that affect the trans-
formation estimations like estimating reflection and noise degeneracy were also considered in the evaluation.   

Introduction 

Point set registration is essential for image-guided surgery since 
guidance requires rigid mapping between image coordinates and world 
coordinates where the surgery takes place or mapping among multi-
modality imaging involved in the scene [1]. The determination of a 
transformation between any two-point sets in different coordinate 
frames is based on minimizing the registration error using the equation 
(1), 

F = ‖A − HSB‖2 (1) 

where A and B are the set of corresponding position vectors in two 
different coordinate frames, F is the registration error corresponding to 
the registration via the transformation H, and S. H is the special 
Euclidean group, denoted by SE(n), composed of rotation and trans-
lation components. S is the diagonal matrix where each diagonal 
component is related to the scaling factor of an individual axis. The 
scaling factors, as denoted, could be non-uniform among axes. Non- 
uniform or anisotropic scaling commonly occurs when the inherited 

device acquires spatial information using different principals for 
different measuring axes. In image-guided surgery, this often happens 
with ultrasound modality. Ultrasound imaging has lateral resolution 
depending on the design of the transducer array, while depth resolution 
depends on the speed of sound waves and wave frequency [2]. Even 
though ultrasound machines by default were configured for uniform 
scaling based on average propagation speed in soft tissue, the speed 
could be varied, causing anisotropic scaling by nature [2,3]. 

Ultrasound-guided surgery has been widely adopted in either 
commercialized systems or research fields because of its prominent 
features in freehand use and real-time imaging [4,5]. Ultrasound is 
susceptible to poor resolution, signal-to-noise ratios (SNR), and limited 
field-of-view; therefore, it is often used in conjunction with other im-
aging volumes, such as CT and MRI, or a navigation system [6]. GE 
Healthcare recently launched the LOGIQ E9, a new ultrasound fusion 
system, which fuses ultrasound images with preoperative CT/MRI and 
displays CT or MR slices corresponding to probe motion [7,8]. The 
ultrasound-guided liver biopsy system adopts the navigation capability 
so that features in an ultrasound image could be related to the biopsy 
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needle in world coordinates [9]. Both examples of ultrasound-based 
applications illustrate the necessity for the registration involving 
anisotropic scaling with high precision and fast computation. 

Only a few techniques have been used to estimate the spatial trans-
formation in anisotropic registration [10]. To the best of the author’s 
knowledge, none of those existing have presented closed-form solutions 
for determining rotation and scale that truly minimize registration er-
rors. The current development of point set registration techniques are 
mostly based on the standard least squares solutions for fitting two-point 
sets, which are either the closed-form solution based on singular value 
decomposition proposed by Arun et al. [11] or the quaternions solution 
proposed by Horn [12]. Note that both solutions only account for uni-
form scaling. Horn has also discussed the extension of his solution to-
ward non-uniform scaling. However, the rotation component is still 
derived based on a uniform scaling assumption. As a result, the overall 
solution does not minimize the registration errors. An interesting iter-
ative approach to registration point sets with non-uniform scaling is the 
block relaxation (BR) technique proposed by Gower and Dijksterhuis 
[13]. The technique iteratively determines scale while fixing rotation 
and determines rotation while fixing the scale until reaching the mini-
mum error. However, it has serious limitations to ensure convergence to 
a minimum [14]. Dosse and Berge et al. proposed a technique of 
orthogonal procrustes analysis for anisotropic scaling and its general-
ized form [15], which is based on the BR technique but with the guar-
antee of iterative convergence. 

To further extend the solutions toward non-corresponding point 
cloud registration, the modified Iterative Closest Point (ICP) [16–18] 
registers point clouds under anisotropic scaling conditions by iteratively 
reducing the errors. Chen et al. [17] did guarantee the convergence of 
their anisotropic ICP algorithm toward a local solution; however, there 
is concern about global minima. As far as can be confirmed, the only 
closed-form solution for registration involving anisotropic scaling has 
been proposed by Qu et al. [19]. Qu et al. derived the solution by 
transforming the point set into the space of unit covariance and deter-
mined the rotation under the condition of unit scaling. These compo-
nents are then transformed back into the generalized covariance space, 
where spatial transformation includes rotation, scale, and shear. Since 
Qu’s solution was not based on the minimization of the objective 
function, as previously mentioned, it is impossible to exclude the 
shearing factors from the solution. The shear factor in the solution al-
ways gives the best fit between the registration point sets, even with the 
data containing noise. The derived transformation might not represent 
true spatial mapping among image modalities or objects in world space 
in the case where shearing has no physical meaning, i.e., preoperative 
calibration. 

We propose a closed-form solution to registration point sets regard-
less of scaling type, which will be called a generalized closed-form so-
lution (GCFS) for the rest of this paper. The method derives the least 
squares solution based on the minimization of registration errors con-
cerning the rotation and scale (without shear). Singular value decom-
position (SVD) was used to extract the rotation components, followed by 
diagonal factorizing of the scale matrix. As mentioned previously, the 
applications of ultrasound registration were used to evaluate the pro-
posed solution. The focus of this paper is to compare the proposed so-
lution to the other closed-form solutions currently in practical use. 

The construction of this paper is as follows. First, a brief explanation 
of the traditional least squares solution for isotropic scaling registration 
was stated. Then, GCFS was derived according to minimizing the 
registration objective function. Lastly, the evaluation of the solution 
toward ultrasound registration in either 3D or 2D was verified in com-
parison with other available closed-form methodologies. The evaluation 
was based on simulation registration under a level of noise-added data 
where the solution could easily degenerate. 

Materials and methods 

Traditional least squares solution for fitting two point sets with isotropic 
scale 

The problem of estimating a transformation between two matrices is 
known as the Orthogonal Procrustes Problem [19]. With the assumption 
of isotropic scaling and rigid transformation, the least squares solution, 
as proposed by Arun et al. [11] and Umeyama [20], is explained as 
follows. 

Given two point sets with zero centroids; Â and B̂ with the same 
number of points and with known correspondence, under the assump-
tion of isotropic scaling, the equation of registration error in Eq.(1) 
could be simplified to 

F = ‖Â − λRB̂‖2 (2) 

where R is a rotation matrix and λ is a scalar factor for the isotropic 
scaling matrix (λ = 1 for non-scaling conditions). The registration 
problem involves finding R, and λ that minimizes F. The solution is given 
as 

R = ÜDV̈T (3)  

D =

{
I ifdet(U)det(V) = 1

diag(1, 1,⋯, 1, − 1) ifdet(U)det(V) = − 1 (4) 

and ÂB̂
T
= ÜΣ̈V̈T is the singular value decomposition of Â B̂

T
. 

The scalar factor of the scaling matrix is estimated according to [14] 
as 

λ =
tr
(

Σ̈
)

‖B̂‖2 (5)  

Propose generalized Closed-Form solution (GCFS) for fitting two 
point sets regardless type of scale 

To generalize the scaling types, the replacement of the isotropic 
scaling factor λ in Eq. (6) by a diagonal matrix S obtains 

F = ‖Â − RSB̂‖2 (6) 

Lemma: Let Â and B̂ be m × n matrices containing position vectors 
with zero centroids, R is a m × m rotation (orthogonal) matrix, S is a m ×

m scaling (diagonal with positive entries) matrix, and UΣVT is the sin-

gular value decomposition of ÂB̂
T
(B̂ B̂)− 1. R and S that minimize F are 

obtained with 

R = UDVT (7)  

D =

{
I if det(U)det(V) = 1

diag(1, 1,⋯, 1, − 1) ifdet(U)det(V) = − 1 (8) 

and S = diag(s1, s2, ..., sm) (9) 

sj =
tr
(

Â
T
RΛj B̂

)

tr
(

B̂
T
Λj B̂

) (10) 

Giving Ʌj a diagonal matrix of size m × m where all entities are zero 
except the diagonal entities j is one. 

Proof of Lemma: Given 

F = ‖Â − RSB̂‖2
= ‖Â‖2

+‖RSB̂‖2
− 2tr

(
RSÂB̂

T)
(11) 

minimization F is determined by partial differentiation F concerning 
RS 
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∂F
∂(RS)

= 2RSB̂B̂
T
− 2Â B̂

T
= 0 (12) 

Eq. (12) becomes, 

RS − Â B̂
T (

B̂ B̂
T)− 1

= 0 (13) 

Note that Eq. (13) is the partial differentiation of F for RS inten-
tionally to find RS that minimized F and later extracted the solution of R 
and S from RS, giving the constraints for each of them. Before directly 
giving the constraints of R and S as they are, we give L≡ S and define L as 
a positive definite matrix instead of S, the diagonal matrix. Since S is a 
diagonal matrix with all positive entries, it is one of the positive definite 
matrices. L covers the wider range of multiple positive definite matrices, 
such as shearing, symmetrical distortion, and scaling matrices in a 
generalized registration. S is defined as a maximized diagonal matrix 
extracted from L. L and R are constrained as the positive definite matrix 
and an orthogonal matrix, respectively, as follows. 

Note that with SVD of ÂB̂
T (

B̂ B̂
T)− 1

= UΣVT Eq. (13) becomes, 

RL = Â B̂
T (

B̂ B̂
T)− 1 (14) 

Multiply Eq. (14) with the transpose of itself gives, 

L2 = VΣ2VT (15) 

Since L it is a positive definite symmetric matrix, the inverse of L 
determining from Eq. (15) is according to [21] where, 

L− 1 = VΣ− 1DVT (16) 

From Eq. (14) and Eq. (16), we could determine, 

R = Â B̂
T (

B̂ B̂
T)− 1L− 1 = UΣVT VΣ− 1DVT = UDVT (17) 

To determine the scaling matrix, the objective function F is mini-
mized for S. S is a diagonal matrix with all positive entries. Partial dif-
ferentiation of F for S gives, 

∂F
∂S

=
∑m

j=1

(
2tr

(
B̂

T
SΛj B̂

)
− 2tr

(
Â

T
RΛj B̂

) )
= 0 (18) 

With the restriction that each 2tr
(
B̂

T
SΛj B̂

)
− 2tr

(
Â

T
RΛj B̂

)
= 0, 

S = diag(s1, s2, ..., sm) (19)  

Where 

sj =
tr
(

Â
T
RΛj B̂

)

tr
(

B̂
T
Λj B̂

) (20) 

Giving Ʌj a diagonal matrix of size m × m where all entities are zero 
except the diagonal entities j is one. Note that the constraint of L as a 
positive definite matrix gives the solution in Eq. (7) and Eq. (9) true in 
the more generalized registration equation involving other components 
such as shearing or symmetrical distortion, although that is not the focus 
of this paper. The proof of Lemma shows that it is true in the boundary of 
mathematical proof, and it gives the solution for RS minimized the 
registration error, not the R that minimized the error. 

Reduced form of GCFS in isotropic scaling or Non-Scaling 
conditions 

The use of the solution in Section 2.2 is not limited only to the 
conditions of anisotropic scaling. For isotropic scaling or non-scaling 
conditions, the solution is feasible, as shown below. 

F = ‖Â − RSB̂‖2where S = λI (21) 

According to the same proof of Eq. (12), SB̂B̂
T 

is a positive definite 

symmetric matrix when S = λI. Therefore, we give L = SB̂B̂
T 

and define 
L it as a positive definite symmetric matrix. Instead, Eq.(14) is derived 
for isotropic scaling as, 

RL = Â B̂
T

(22) 

Then, given 

Â B̂
T
= ÜΣ̈V̈T (23) 

according to GCFS in Eq.(17), the rotation matrix becomes 

R = ÜDV̈T (24) 

which, according to Eq. (20) and Eq.(24), 

sj =
tr
(
AT RΛjB

)

tr
(
BT ΛjB

) =
tr
(

ÂBTΛjRT
)

‖B̂‖2 =
tr
(

ÜΣ̈V̈T ΛjV̈DÜT
)

‖B̂‖2 =
tr
(

Σ̈
)

‖B̂‖2 (25) 

For isotropic scale s1 = s2 = .... = sm = λ, therefore 

λ =
tr
(

Σ̈
)

‖B‖2 (26) 

Eq.(24) and Eq.(26) are the same as proposed by [11] and [14] for a 
singular value estimation of rotation for isotropic scaling or non-scaling 
(λ = 1). Therefore, GCFS is the generalized form of traditional least 
squares solution [11,20] that involves non-uniform scaling. 

Special Case: Register coplanar point sets (Rank ¼ 2) in 3D space 

The common scenario to estimate the transformation between two- 
point sets is fitting a 2D image into a plane in 3D models, as depicted 
by the application of ultrasound and CT fusion [13]. The individual 
point sets Â and B̂ are coplanar but non-collinear. Since both present 

zero variance in one of the three dimensions Â B̂
T 

and B̂ B̂
T
, as in Eq.(17), 

have a zero eigenvalue, that is, the singular value decomposition of Â B̂
T 

Â B̂
T
= UΛVT (27) 

and the singular value decomposition of B̂ B̂
T 

B̂ B̂
T
= ŨΣ̃Ũ

T
(28) 

where Λ = diag(λi), λ1 ≥ λ2 ≥ λ3 and Σ̃ = diag(σi), σ1 ≥ σ2 ≥ σ3 have 
zero eigenvalues λ3 = σ3 = 0. When the matrices are singular, the so-
lution in Eq. (17) is indefinable. This amounts to rank deficiency and 
infinite solutions for determining a transformation that minimizes 
registration errors. 

For this, the solutions are determined separately for the two sce-
narios.  

1) B̂ is a coplanar point set and is 2D data, e.g. bi = [ x y 0 ]
T , where 

Â is a coplanar point set in 3D space ai = [ x y z ]T, such as 
registering a 2D image into a known plane in a 3D image volume. In 
this case, si, where i corresponds to the dimension which is the rank 

deficient, could not be retrieved as λi = σi = 0 and both Â B̂
T 

and 

B̂ B̂
T 

are singular matrices. This singularity could be avoided by 

giving si = 1 and giving λi = σi = 1 before calculating Â B̂
T (

B̂ B̂
T)− 1 

in Eq. (17).  
2) Both Â and B̂ are coplanar point sets and are 3D data; e.g., ai =

[ x y z ]T and bi = [ x y z ]T. The singularity in Eq. (17) could be 
avoided by dimension reduction. However, the missing dimension-
ality results in unknown parameters; one rotation component cor-
responds to a scaling factor. Assigning the value to one scaling factor, 
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all unknown rotation components could be retrieved via Eigenvalue 
decomposition. 

Results 

The performance of GCFS to estimate a transformation under the 
generalized scaling condition was evaluated with a set of synthetic data. 
In the evaluation, the scaling factors are randomly chosen therefore, the 
type of scaling could be either isotropic or anisotropic. The verification 
was performed on 1) registration of pair 3D point sets 2) registration of 
two coplanar point sets in 3D space. The implementation and calculation 
were based on a (2.40 GHz, Intel(R) Core (TM) i5 CPU) computer with 
MATLAB 2019 (The MathWorks, Inc., Natick, Massachusetts, United 
States) and its built-in singular value decomposition library. 

Registration of 3D point sets (Rank = 3) 

The authors applied a scenario of Computer-assisted Hip Resurfacing 
surgery [22] to evaluate GCFS. In Hip Resurfacing surgery, intra-
operative position and orientation of femoral heads and tools are very 
important to drill and ensure the implant position. During surgery, the 
computer-assisted system would acquire 3D ultrasound scans of the 
bone surface. The bone surface will then be registered to a preoperative 
bone model, followed by the update of preoperative planning according 
to the actual bone position and orientation. Due to variations in ultra-
sound machines, the scanning bone surface would be scaled differently, 
and the scaling is likely to be non-uniform. Registration of the point sets 
acquired from scanning a proximal femur was used to evaluate the 
closed-form solution. Note that the point sets are the synthesis data. Ten 
linear transformations were randomly selected to fit the point set Â into 
another point set B̂. The random parameters are in the range as follows; 
Rx,Ry,Rz ∈ [0, π], tx, ty, tz ∈ [ − 2,2], and s1, s2, s3 ∈ [0.3,1]. 

Fig. 1. Comparisons of noise levels and (a) fiducial registration error (FRE) (b) relative error (ε) using GCFS, Qu’ solution, and the traditional least squares solution.  

Fig. 2. The relative error of estimating Ĥ = R̂ Ŝ with the increasing level of noise.  
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Isotropic Gaussian noise with relative variance σ ∈ [0,0.07] for the 
normalized data was added B̂ before the estimation of the trans-
formation. GCFS was compared to the traditional least squares solution 
for isotropic scaling [11,20] and Qu’s closed-form method for general 
affine registration [19]. Since the principle to estimate the translation 
for all three methods is the same, the relative errors are evaluated only 
on the rotation and scale components. Fiducial registration errors (FRE); 
FRE = 1

N F = 1
N‖Â − RSB̂‖2 are calculated for each solution at each level 

of noise degeneracy to evaluate the tolerance to degeneracy [23]. In 
addition, the deviation from the identity matrix was evaluated to mea-
sure the relative error between the estimated matrix and the synthetic 
one. Let Ĥ = R̂ Ŝ be the product of multiplication between the synthetic 
rotation matrix and scaling matrix. H is the 3 × 3 transformation matrix 
determined from the methods.ε = ‖I − ĤH− 1‖F is the relative error be-
tween the true and estimated transformations. ‖ • ‖F denotes the Fro-
benius norm of the matrix. 

Average FRE and ε at various levels of noise is shown in Fig. 1, and 
Fig. 2 shows the results of the relative error of estimating Ĥ = R̂ Ŝ with 
the increasing level of noise. Fig. 3 depicts an example of the registration 
under anisotropic scaling using GCFS. The result of anisotropic scaling 
3D point sets registration using a closed-form solution under Gaussian 
noise at various standard deviations is shown in Fig. 4. 

As shown in Fig. 1(a), the traditional least squares solution shows a 
certain amount of FRE even at zero noise degeneracy, while GCFS and 
Qu’s method [19] show none. Since both are based on the same least 
squares method, GCFS, and the traditional least squares method seem to 
display a linear relationship as noise increases. Qu’s method, on the 
other hand, has FRE increasing rate greater than the other two methods 
as noise increases. Moreover, the efficiency of Qu’s method toward 
estimating the true transformation (synthesis), as depicted in ε (Fig. 1 

Fig. 3. Surface scan of a femur under the effect of anisotropic scaling registered to its own 3D model using GCFS at various standard deviations of Gaussian noise.  

Fig. 4. The result of anisotropic scaling 3D point sets registration using closed- 
form solution under Gaussian noise at various standard deviations. 

Fig. 5. Evaluation of GCFS in coplanar registration with the application in 
ultrasound calibration (a) an ultrasound image that contains the feature of the 
phantom and (b) a 2D alignment phantom. 
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(b)) is significantly worse compared with the others. The relative errors 
grow dramatically while GCFS and traditional least squares method 
show low increasing rates along the increasing of degeneracy. Among 
the three, GCFS presents the lowest FRE and Ɛ either at the ideal zero 
noise or under high degeneracy. 

Registration of two coplanar point sets in 3D space (Rank = 2) 

Registration of the features visible in 2D ultrasound images with the 
corresponding phantom construction is one of the foundations of ul-
trasound calibration. The design of a 2D alignment phantom [24], laser 
cut on a 2 mm acrylic sheet (Fig. 5(b)), was used as the ultrasound 
calibration phantom in our experiment. The authors manually aligned 
the phantom plane to coincide with the scanning plane so the ultrasound 
images fully display the phantom, as illustrated in Fig. 5(a). Seven points 
from the vertices of the phantom were fitted to the corresponding points 
in the ultrasound images. Twenty ultrasound images, which perfectly 
capture the plane of the phantom, were selected. Ten random linear 

transformations were selected as the frame transformation of the 
phantom in 3D space. The random parameters are in the range as fol-
lows; Rx,Ry,Rz ∈ [0, π], tx, ty, tz ∈ [ − 2,2], s1, s2 ∈ [0.3, 1], and s3 = 1 The 
scale factors were not simulated but rather used as evaluated criteria. 
The efficiency of the 2D to 3D registration was evaluated based on the 
mean, standard deviation, and maximal deviation of FRE and the scale 
factors. The results of 2D to 3D registration is shown in Table 1. 

A 2D point set acquired from a plane of 3D Parasaurolophus was used 
to evaluate the solution. This point set aligns on an x-y plane of a 3D 
space with a constant z value at 0. Ten random linear transformations 
were selected to transform the point set A′ into another point set, B. The 
result of the registration is shown in Fig. 6. 

Table 1 indicates the mean, standard deviation, and maximum de-
viation of fitting the ultrasound features to the corresponding con-
struction in 3D space. The average FRE and ε are small, thus illustrating 
a close fit with the estimated transformation. For the scaling factors the 
true scaling factors were not known for the tested ultrasound machine. 
Since we expected certain scale factors for the specific probe and specific 
scanning medium, the deviation of the estimated scale would demon-
strate the reliability of the solution. Although the results in Table 1 show 
a small standard deviation, as expected, the maximum deviations are 
relatively high. This might be the consequence of the manual alignment 
of the phantom plane with the scanning plane. However, further ex-
periments must be performed to ensure the conclusion. Using the 2D 
phantom with symmetric shape, the reflections in the solutions were not 
found among the three methods. 

Though the problem of anisotropic registration involves several 

Table 1 
FRE,ε, and scaling factors of the ultrasound image determined using GCFS with 
ultrasound image mapping in 3D space (number of ultrasound images n = 20).   

Mean Standard Deviation Maximum Deviation 

FRE  0.36  0.24  0.21 
ε(Only rotation and scale)  0.33  0.43  0.81 
Lateral scale factor  1.23  0.21  0.64 
Depth scale factor  1.11  0.17  0.78  

Fig. 6. The result of registering 3D coplanar point sets registration using closed-form solution under Gaussian noise at various standard deviations.  
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applications, this paper is motivated by the application of Ultrasound- 
guided surgery. Two examples of image-guided surgery involving ul-
trasound were chosen to evaluate this method. However, the registra-
tion between different modalities other than ultrasound could also be 
achieved with this generalized closed-form solution. The other medical 
applications which could benefit include surface reconstruction of or-
gans in laparoscopic surgery with various optical localizer measure-
ments [25,26]. Also, theoretically, the proposed solution could be used 
in other coordinate-registration applications that involve the component 
of shearing and symmetrical distortion, such as image registration 
[3,27–29], camera/image modalities calibration [30–32], optical 
tracking [33,34], computer vision [35,36], robot navigation [37,38], 
and augmented reality [39,40] where the point set data are acquired 
from stereovision, 3D scanning, or an array of rangefinders. This testing 
with the dataset from the applications would need further exploration, 
and the comparison of the proposed method to the iterative method in 
terms of computational cost, accuracy, and stability will be focused on in 
future work. 

Conclusions 

In this paper, we present a generalized closed-form solution (GCFS) 
for point sets fitting and pose estimation under isotropic or anisotropic 
scaling. The method uses singular value decomposition and covariance 
matrix to solve for the least squares solution. The method provides a 
generalized solution regardless of isotropic or anisotropic scaling. Note 
that under isotropic scaling, the solution reduces the form into the 
traditional least squares solution [5]. The mathematical proof of the 
solution, as well as the demonstration of the efficiency, are provided. 
The method was demonstrated to 1) register two 3D point sets under the 
effect of anisotropic scaling and 2) register two coplanar 3D point sets 
under the effect of anisotropic scaling. The accuracy of the method was 
evaluated in both cases under noise degeneracy. The estimated spatial 
transformations matched with the synthetic matrices and depicted the 
most efficient among all the methods. No instability was found during 
the evaluation. With this closed-form solution, the registration between 
different modalities which exhibit anisotropic scale could be achieved. 
The further extension of the closed-form solution such as registration of 
point clouds with unequal number of point member or unknown cor-
respondence. The proposed solution could be used in the applications 

such as image registration, camera/image modalities calibration, optical 
tracking, computer vision, robot navigation, and augmented reality 
where the point set data are acquired from stereovision, 3D scanning, or 
an array of rangefinders. 
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Appendix 1:. The simple MATLAB code describe the calculation of the solution for 3D point sets 

function [translation,rotation,scale]=genealized_method(q_A,q_B). 
centroid_q_B =sum(q_B,2)/size(q_B,2); 

centroid_q_A =sum(q_A,2)/size(q_A,2); 

q_B_center =q_B-repmat(centroid_q_B,[1,size(q_B,2)]); 

q_A_center =q_A-repmat(centroid_q_A,[1,size(q_A,2)]); 

H =q_A_center*q_B_center’; 
P =q_B_center*q_B_center’; 
[UH,SH,VH]=svd(H); 

[UP,SP,VP]=svd(P); 

H_d= UH*SH*VH’; 
P_d= UP*SP*VP’; 
K_d=H_d*(P_d)^(-1); 

[U,S,V]=svd(K_d); 

s1=trace(q_A_center’*rotation*diag([1,0,0])*q_B_center)/trace(q_B_center’*diag([1,0,0])*q_B_center); 
s2=trace(q_A_center’*rotation*diag([0,1,0])*q_B_center)/trace(q_B_center’*diag([0,1,0])*q_B_center); 
s3=trace(q_A_center’*rotation*diag([0,0,1])*q_B_center)/trace(q_B_center’*diag([0,0,1])*q_B_center); 
rotation=U*V’; 
scale =diag([s1,s2,s3]); 

translation =centroid_q_A-rotation*scale*centroid_q_B; 
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Appendix 2:. Calculate rotation and scale of coplanar point sets in arbitrary alignment 

Two coplanar point sets have rank deficiency to determine S (rank = 3) together with arbitrary 3D rotation. However, one can determine unique S 
together with unique Rx,Ry,Rz giving one of the scale factors.si = k 

As follow. 
Giving RA and RB the rotation matrices that transform A and B into 2D point sets on x-y plane; A and B, respectively. The transformation of point 

sets into x-y plane could be determined using with Rodrigues’ Rotation Formula. 
According to (5), 

A′ = RARSRT
BB (A1) 

Where A′ is transform of B on the same plane at the closest to.A 

Giving P = RARSRT
B (A2) 

We can determine P2×2 by calculate (13) at rank = 2. 
Since A′ is 2D data on x-y plane, P3,1, P3,2 = 0 as follow, 

P =

⎡

⎢
⎢
⎣

P2×2
x1

x2

0 0 x3

⎤

⎥
⎥
⎦ (A3) 

x1, x2, x3 in (A3) could be determined using 

A′ = PRBB (A4) 

Giving SVD of P = ŨΣ̃Ṽ
T
. (A2) and (A4) denotes, 

Ṽ = RBand Σ̃ = S (A5) 

Multiply P with its transverse 

PT P = ṼS2Ṽ
T

(A6) 

According to (A6), each column of Ṽ represent the eigenvector of PTP with si, the corresponding eigenvalue. 
x1, x2, x3 could be determined by solving the eigenvalue and eigenvector problem 

PT PRB( :, 3) = kRB( :, 3) (A7)  
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