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Nonlinear Dynamic States’ Estimation and
Prediction Using Polynomial Predictive Modeling

Estimation et prédiction d’états dynamiques
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Abstract— In motion-control applications, noise and dynamic nonlinearities influence the performance of
control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications
should have precise control methods to achieve the desired responses. Therefore, predicting and compensating
for the disturbance are essential for increasing system robustness and achieving high precision and fast reaction.
This article introduces the polynomial predictive filtering (PPF) method to estimate the states of a system using
polynomial extrapolation of consecutive and evenly spaced sensor data. Acceleration-/torque-based experiments
are conducted to validate the effectiveness and viability of the proposed method. The difference between the
real-time sensor data and the PPF-based predicted value shows a standard deviation of less than 0.15 and 1 ×

10−5 for the velocity and disturbance torque, respectively.
Résumé— Dans les applications de contrôle des mouvements, le bruit et les non-linéarités dynamiques

influencent les performances des systémes de contrôle et entraînent des perturbations imprévisibles. Les
servomoteurs à courant continu utilisés dans les applications de contrôle des mouvements doivent faire l’objet
de méthodes de contrôle précises pour obtenir les réponses souhaitées. Par conséquent, il est essentiel de prévoir
et de compenser les perturbations afin d’accroître la robustesse du système et d’obtenir une grande précision
et une réaction rapide. Cet article présente la méthode de filtrage prédictif polynomial (PPF) pour estimer les
états d’un système en utilisant l’extrapolation polynomiale de données de capteurs consécutives et régulièrement
espacées. Des expériences basées sur l’accélération et le couple sont menées pour valider l’efficacité et la viabilité
de la méthode proposée. La différence entre les données du capteur en temps réel et la valeur prédite par la
méthode PPF présente un écart type inférieur à 0,15 et 1 × 10−5 pour la vitesse et le couple perturbateur,
respectivement.

Index Terms— Disturbance observer (DOB), motion control, polynomial extrapolation, reaction torque
observer (RTOB), state estimation.

NOMENCLATURE
Ia

ref Reference current.
θ̈ Angular acceleration of the motor.
T f Friction torque.
Tdis Disturbance torque.
B Damping viscous coefficient.
Kt Motor constants.
Ktn Nominal motor constants.
Gdis Filter coefficient.
Jn Nominal rotor inertia.
J Rotor inertia.
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I. INTRODUCTION

MOTION control techniques, which have been advanced
intensely in the last few decades, play an indispensable

role in many industrial automation applications [1], [2], [3].
The efficacy of the robotic application systems is predomi-
nantly centered on position and force control [4]. To accom-
plish precise position and torque control, dc servomotors are
extensively employed. The dc servomotors are commonly used
in robotics owing to their simple structure and significant
testing efficiency at a low cost. The prediction of position,
velocity, acceleration, force, and nonlinearities of such instru-
ments are very important in robotic applications [5], [6].

Therefore, estimation and compensation of the disturbance
are critical for increasing the system robustness and achiev-
ing high precision and fast reactions [7]. As unknown sig-
nals influence the performance of control systems and may
contribute to disturbances, dynamic nonlinearities can cause
disturbances in the system. A disturbance observer (DOB) is
a tool for correcting disturbances that are particularly useful
and commonly used in robotic motion control applications [8],
[9], [10], [11]. The DOB, as the name implies, measures
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and estimates the disturbance. It compensates for unknown
disturbances once they have been measured [12]. Owing to the
compensation effect, the net effect on the system is a near-zero
disturbance [13]. Control in disturbances must be estimated
and predicted properly to obtain the desired response of the
system, and its estimation depends on the errors of the sensor
data from the systems.

However, these errors are intrinsic to any physical system.
Nevertheless, measured data can be smoothed or filtered to
reduce the effects of noise [14], [15]. These datasets are
composed of samples from slowly fluctuating analog signals,
which can be modeled as low-order polynomial segments [16].
When it comes to predicting future samples of such signals,
this assumption comes in handy. Predictive filtering is useful in
automatic control applications, where the delay in a feedback
loop must be reduced to a minimum to ensure fast system
controllability [17], [18], [19], [20].

In real-time applications, many industrial control systems
do not allow for the inclusion of additional delays in the
signal path. Kalman and α–β filters blend noisy and limited
sensor readings to produce the best possible estimate of the
state of the system. Moreover, such methods are computa-
tionally expensive [21]. The extended Kalman filter (EKF)
requires more computation in each moderately dimensional
state space. The EKF essentially entails utilizing a Taylor
series expansion to linearize the model equations to the first
order [22]. In addition, this method also has several limita-
tions. First, only small nonlinearities can be accommodated
when first-order approximation is sufficiently accurate. This
necessitates computing the observation matrices and Jacobian
of the state transition. Therefore, these algorithms may be
complex and challenging to maintain as the model changes
and also possible that the algorithm will diverge [23]. This
article proposes the possibility of using low-degree polyno-
mials to estimate and predict the states and motion control
parameters of dc motors. This method can reduce compu-
tational expenses, and the mathematical burden and small
nonlinearities can be accommodated by using a sufficiently
accurate low-order polynomial approximation. However, the
application of polynomial predictive filtering (PPF) was not
limited to this domain. Further application areas can be clas-
sified as areas where a higher degree of polynomial filtering is
required and areas where exceptionally fast execution speeds
are required, such as plant control, inertial kinematics, and
tracking [24], [25], [26].

Polynomial modeling is regarded as one of the most power-
ful tools for signal processing [27]. To approximate and predict
data from motor drives, low-degree polynomials or sinusoids
can be used. For example, the high inertia of the motor and
load inhibits an abrupt stepwise increase in angular velocity.
The practical velocity curves are always smooth, owing to
the inertia. Smooth signals can be accurately described as
low-degree polynomials within a limited time period [28].
Therefore, the angular velocity has been approximated using
a low-degree polynomial in many practical scenarios [29],
[30], [31], [32]. Hence, for the prediction of random signals
and the separation of random signals from random noise,
numerous studies have been conducted on the detection of
signals of known form in the presence of random noise [33],

[34], [35], [36]. The motivation of these studies is to develop
a specification for a linear/nonlinear dynamic system that can
predict, separate, or detect random signals, as described in
Section III. For this purpose, the authors developed a numeri-
cal solution based on the polynomial modeling of sensor data
to obtain future values from previous values. This research
takes an alternative look at a set of issues, sidestepping the
difficulties previously highlighted and avoiding computational
expenses and the mathematical burden of using low-degree
polynomial equations. In this study, a state estimator was
developed with an accurate and precise estimation in the
presence of uncertainty in the sensor data using polynomial
extrapolation. In addition, the PPF predicts the forthcoming
states based on previous sensor data.

The PPF algorithm works by a three-phase process: ini-
tialization is performed only once, and it provides the initial
system state and initial state uncertainty, followed by the
prediction. The state update process is responsible for the
future state estimation of the system. In this phase, PPF
requires measured value, measurement uncertainty, previous
system state, and estimate uncertainty. Based on these inputs,
the state update process calculates the gain and provides the
predicted system state and the current state that estimate
the uncertainty. In the second phase, the future values are
predicted using polynomial extrapolation. The third phase (the
prediction process) calculates the predicted system state, and
the uncertainty of the current system state estimates the next
system state based on the dynamic model of the system.
For dc motor applications, the system state can be predicted
using a lower degree polynomial equation. The viability of
the proposed method was combined and analyzed using the
observer-based dc motor parameter estimation method [1]
described in Section IV. Acceleration-/torque-based experi-
ments were also performed for the statistical analysis and
validation of the proposed method.

II. NOTATION CONVENTIONS

We will mainly deal with discrete dynamic systems through-
out the study; that is, signals will be observed at evenly spaced
points in time. Small-hat letters indicate the values to be
predicted (ẑ).

III. MODELING OF POLYNOMIAL PREDICTIVE FILTER

The one-degree polynomial extrapolation performs using
two data points (which is also a linear extrapolation). Three
data points are used to create a quadratic polynomial equa-
tion. Similarly, an (m − 1)-degree polynomial requires m
data points [37]. This study assumes that the signal can be
modeled as an mth-order polynomial. However, forecasting
future values of a primary signal affected by additive white
Gaussian noise or uniformly distributed noise is a common
problem [38]. Any measurement value is the result of a linear
combination of signal value and measurement noise [39]. Both
are considered to be Gaussian. Thus, the estimation of a future
value of a signal from the past samples of a polynomial
function can be written as

ŷ = ẑ + e (1)
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Fig. 1. Schematic of the proposed method.

where ẑ is the estimated value of signal using polynomial
extrapolation and e is the disturbing noise component. ẑ
can be calculated for consecutive and evenly spaced points
as follows. If z1, z2, z3, . . . , zn−2, zn−1, zn, zn+1, . . . are the
corresponding values of equally spaced and consecutive values
of a polynomial function of xi , and zn is any value of f (xn),
then

ẑn =

m+1∑
q=1

(−1)(q+1)(m + 1)!

q![m − (q − 1)]!
z(n−q) (2)

or

ẑn =
(m + 1)

1!
z(n−1) −

m(m + 1)

2!
z(n−2) + · · · (3)

where m is the degree of the polynomial, and q =

1, 2, 3, . . . , (m+1), q < m+1. Fig. 1 demonstrates a pictorial
representation of the method.

For a two-degree polynomial

zn = ax2
n + bxn + c. (4)

From (3) and (4), the nth value can be predicted from the
previous value as

ẑn = 3z(n−1) − 3z(n−2) + z(n−3). (5)

Proof: If the polynomial equation of mth-degree satisfies
(2), it can be written as (6).

(x + y)m
=

p∑
q=1

(−1)(q+1)(m + 1)!

q![m − (q − 1)]!
(x + (y − q))m

[m − (q − 1)] > 0. (6)

Lemma 1:
p∑

q=1

(−1)(q+1)(m + 1)!

q![m − (q − 1)]!
= 1

{[m − (q − 1)] > 0} ∀m ∈ N. (7)

Equation (7) can be expanded as

(m + 1)

1!
−

m(m + 1)

2!
+

m(m − 1)(m + 1)

3!
· · · = 1. (8)

Proof of Lemma 1: Adding and subtracting 1 in the
left-hand side of (8)

1 =
(m + 1)!

(m + 1)!
. (9)

Equation (8) becomes
(m + 1)!

(m + 1)!
−

(m + 1)

1!
−

m(m + 1)

2!
+

m(m − 1)(m + 1)

3!
+ · · ·

= 1−

[(
m + 1

0

)
+

(
m + 1

1

)
(−1) +

(
m + 1

2

)
(−1)2

+ · · ·

]
= 1 − (1 − 1)(m+1)

= 1.

Thus, according to (3) for an m-degree polynomial and by
binomial theorem expansion

(x + (y + 2))m

=
(m + 1)

1!
(x + (y + 1))m

−
m(m + 1)

2!
(x + (y))m

+ · · ·

=
(m + 1)

1!
[xm

+ mx (m−1)(y + 1) + · · · ] −
m(m + 1)

2!

×

[
xm

+ mx (m−1)y +
m(m − 1)

2!
x (m−2)y2

+ · · ·

]
+

m(m − 1)(m + 1)

3!

×

[
xm

+ mx (m−1)(y−1) +
m(m−1)

2!
x (m−2)(y−1)2

+ · · ·

]
= xm

[
(m + 1)

1!
−

m(m + 1)

2!
+

m(m − 1)(m + 1)

3!
· · ·

]
+ mx (m−1)

[
(m + 1)

1!
(y + 1) −

m(m + 1)

2!
y + · · ·

]
+

m(m−1)

2!
x (m−2)

[
(m+1)

1!
(y+1)2

−
m(m+1)

2!
y2

+ · · ·

]
+

m(m − 1)(m − 2)

3!
x (m−3)

[
(m + 1)

1!
(y + 1)3

−
m(m + 1)

2!
y3 . . .

]
. . .

= xm
+ mx (m−1)(y + 2) +

m(m − 1)

2!
x (m−2)(y + 2)2

+ · · · .

(10)

Since
(m + 1)

1!
−

m(m + 1)

2!
+

m(m − 1)(m + 1)

3!
· · · = 1 (11)

(m + 1)

1!
(y + 1) −

m(m + 1)

2!
y + · · · = y + 2

(12)
(m + 1)

1!
(y + 1)2

−
m(m + 1)

2!
y2

+ · · · = (y + 2)2

(13)
(m + 1)

1!
(y + 1)3

−
m(m + 1)

2!
y3

+ · · · = (y + 2)3

(14)

which implies

(x + (y + 2))m
=

(m + 1)

1!
(x + (y + 1))m

−
m(m + 1)

2!
(x + y)m

+ · · · .

Hence, the following is proven:

ẑn =

p∑
q=1

(−1)(q+1)(m + 1)!

q![m − (q − 1)]!
z(n−q) (15)
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where zn−q represents the previous values of the polynomial
functions. Assume a system whose state can measure in
successive steps. If the system is static, one does not modify
its state in a reasonable period of time. Therefore, multiple
measurements can be taken and averaged

ŷn,n =
1
N

N∑
n=1

zn (16)

where y is the true value, zn is the measurement value at time
n, and ŷn,n is the estimate of y at time n (the estimate is made
after taking the measurement zn−1). Since the dynamic model
is static, that is, the states do not change over time, therefore,
ŷn+1,n = ŷn,n . Although the above equation is mathematically
correct, it is impractical for implementation. To estimate ŷn,n ,
previous measurements must be remembered, particularly for
states that change with time. If ŷn,n−1 is the previous estimate
of y that was made at time (n − 1) (the estimate was made
after taking the measurement zn−2), ŷn+1,n is the estimate of
the future state (n + 1) of y. The estimate is made at the time
n, right after the measurement zn . In other words, ŷn+1,n is a
predicted state. From (1), the state update equation is given as
follows:

ŷn,n−1 = ẑn + Gn(αn − ẑn) = (1 − Gn)ẑn + Gnαn (17)

where Gn is called the gain. The subscript n indicates that
the gain can change with every iteration. The term ẑn is
a predicted value; it contains the new information and is
calculated from previously measured values. αn represents
the value of system dynamics or the value calculated from
the dynamic model of our system. The second part of (17)
represents the measurement noise. Therefore, the value of the
measurement noise should be estimated and updated at each
iteration. Suppose that two devices with different designs to
measure the measurements z1

1 and z2
1 are likely to be different

from each other and from the actual value zc. Ad hoc solution
to this issue is given as [40]

y
(
z1

1, z2
1

)
= β ∗ z1

1 + α ∗ z2
1. (18)

The result of adding the two sensor values or the estimators
z1

1 and z2
1 should be the same if they are equal. This suggests

that β + α = 1. Consequently,

y
(
z1

1, z2
1

)
= (1 − α) ∗ z1

1 + α ∗ z2
1. (19)

Thus, the optimal linear estimator y(z1
1, z2

1) from the
Kalman filter is [34], [40]

y
(
z1

1, z2
1

)
= z1

1 + K
(
z2

1 − z1
1

)
(20)

where

K =
σ 2

1

σ 2
1 + σ 2

2
(21)

where σ 2
1 and σ 2

2 are the variance of the measurements.
By comparing (17) and (21)

ẑn + Gn(αn − ẑn) = z1
1 + K

(
z2

1 − z1
1

)
. (22)

For a single-input–single-output (SISO) system z2
1 = αn ,

it can be converted into an MISO system when αn takes from
another sensor data instead of dynamic model value

ẑn + Gn(αn − ẑn) = z1
1 + K

(
αn − z1

1

)
. (23)

If the sensor data can be modeled as a one-degree polyno-
mial (m = 1, linear), then, from (3)

ẑn = 2zn−1 − zn−2. (24)

According to (2), for a nonlinear system

ẑn =

m+1∑
q=1

(−1)(q+1)(m + 1)!

q![m − (q − 1)]!
z(n−q). (25)

A. Gain Equation

It is known that the true value, the estimated value, and
the measured value may not always be equal. Measurement
errors are the differences between measurements and true
values. The measurement uncertainty (σ 2

m) is the variance in
measurement errors. The variance of the measurement errors
can be derived using a calibration procedure or by a scale
vendor. The measurement error variance is the measurement
uncertainty. The estimated error is the difference between the
estimated and true values. The less precise our measurement
is, the noisier it is. Noise or uncertainty is captured directly
by variance. As a result, the lower the gain, the greater the
measurement variance noise. The noisier our process state is,
the more important innovation should be considered. As a
result, the larger the process state variance, the greater the
gain. Thus, the variance of a linear sum of two measurements
is given as [41]

pn,n =
pn,n−1rn

pn,n−1 + rn
= pn,n−1 −

p2
n,n−1

pn,n−1 + rn
.

The gain factor Gn is given as

Gn =
Process Noise

Process Noise + Measurement Noise
(26)

Gn =
pn,n−1

pn,n−1 + rn
. (27)

pn,n−1 is the extrapolated estimate uncertainty (uncertainty in
estimate) and rn is the measurement uncertainty.

B. Estimate Uncertainty Update

The gain is close to one when the measurement uncertainty
is small and the estimated uncertainty is large. From (27), the
estimate uncertainty update is defined as

pn,n = (1 − Gn)pn,n−1. (28)

pn,n and pn,n−1 are the estimated uncertainty of the cur-
rent state and the estimated uncertainty that were calculated
during the previous filter estimation, respectively. This equa-
tion updates the current state’s estimated uncertainty. Since
(1 − Gn) < 1, the equation that estimates uncertainty is
always getting smaller with each filter iteration. When the
measurement uncertainty is high, the gain is minimal, and
the estimated uncertainty will take a long time to converge.
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TABLE I
DC MOTOR SPECIFICATIONS

When the measurement uncertainty is small, however, the gain
is large, and the estimated uncertainty quickly approaches
zero. For a constant dynamic system, the estimated uncertainty
extrapolation would be

pn+1,n = pn,n. (29)

However, in a real situation, the system dynamic model con-
tains uncertainty [42]. Thus, the process noise or model noise
refers to the dynamic model’s uncertainty. If the estimation
errors are caused by process noise and the process noise
variance is denoted by q, then the covariance extrapolation
equation for constant dynamics is

pn+1,n = pn,n + qn. (30)

The initialization is executed only once, and it provides two
parameters: the initial system state (ẑ1,0) and the initial state
uncertainty (p1,0). However, another system or process can
provide initialization parameters. The measurement is executed
for every filter cycle and provides the measured system state
(zn) and measurement uncertainty (rn). Fig. 2 provides a
schematic description of the algorithm. The PPF can converge
close to the true value even if the initialization parameters
are not precise. The experimental results provide convincing
evidence in favor of the convergence of PPF values to the true
value, as described in Section IV.

IV. IMPLEMENTATION OF ALGORITHM

To validate the proposed method, we conducted an experi-
ment to collect the data from the dc motor, as shown in Fig. 3.
The motor’s specifications are provided in Table I. A pulse
width modulation (PWM)-based motor driver using a driver
IC (DRV8432 by Texas Instrument) that can carry current
up to 14 A with a peak load of 24 A drives the motor. The
processor generates the PWM signals. To sense the position,
an encoder is connected to the motor, and its specifications are
provided in Table II. All computations are written in C and
run on a real-time operating system (RTOS) with a 100-µs
sample time.

The DOB is used as a torque sensor in this study, and
the block diagram of the reaction DOB is shown in Fig. 4.
DOB identifies the total mechanical load, and the influence
of system parameter changes on the total motor disturbance.

TABLE II
ENCODER SPECIFICATIONS

The reaction torque Trec can be measured if the frictional
components are measured and eliminated from the disturbance
output [43]. This is a reaction torque observer (RTOB), which
is a variation of the DOB [7]. In the experiment, the rotor
rotates for 30 s, and the velocity response of these rotations,
total torque, and disturbance torque is measured. In this
situation, a one-degree polynomial can be used to approximate
the data from motor drives. If zn−1 and zn−2 are the DOB
measurement values at times (n −1) and (n −2), respectively,
use (24) to estimate the value of ẑn (current time) from these
previous values. Thus, the disturbance torque from (17) is
given as

T̂ disn = ẑn + Gn(αn − ẑn). (31)

By comparing the DOB measurement values at nth time and
the PPF value, the accuracy and efficiency of the proposed
method can be estimated. To predict the (n + 1)th time
disturbance or predict the disturbance torque

ẑn+1 = 2zn−zn−1. (32)

From the above equation, T̂ disn+1 can be forecast. This opens
up a new way for us to use DOB data to predict the future
values of the disturbance in the system. In other words, DOB
can be converted into a predictor. In this experiment, a system
dynamic equation to determine the value of the disturbance
torque Tdis was obtained from [1]

αn = Tdis = Ktn Ia − Jnω̇ (33)

where the torque coefficient is Kt , which can be calculated
in the rotor stall test, and the inertia of the load linked
with the rotor is Jn , which is calculated using three tests:
the acceleration motion test, the deceleration motion test,
and the reverse motion acceleration test. Nominal values are
denoted by the subscript n. However, these values are always
kept constant; therefore, compared to the DOB value, these
values are less accurate. This produces fluctuations in the
prediction. By considering this situation, to validate our model,
we compared the values from the encoder and DOB values
with the estimated value of the velocity and disturbance torque
from the PPF estimator, respectively. Statistical analysis of the
data is described in Section IV-A.

A. Statistical Analysis of PPF Model

This section summarizes the primary statistical modeling
and analysis results associated with the PPF. Experiments were
performed to demonstrate the importance and validity of all
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Fig. 2. Schematic description of the algorithm.

Fig. 3. Block diagram of the one-DOF rotational manipulator.

predicted values of the velocity and disturbance torque using
the PPF. In addition, the predicted values were compared with
the DOB data. The sample for this study consisted of three
different velocities of a dc motor, and the relationship between
the data from the sensor and the predicted values was analyzed.
From the analysis, a correlation was found between the sensor
data and predicted values.

In the experiment, the rotor rotated for 30 s and contained
more than 1800 samples of sensor data. These data satisfy the
one-degree polynomial extrapolation condition of (24). Since
sensor data were precise; the process noise variance (q) is set
to 0.0001, and the measurement error (standard deviation) was
set to 0.1. Using (27), (28), and (30), it can calculate the values
of gain and estimate the uncertainty, respectively. Variance
and standard deviations were used to determine the correlation
between the predicted and sensor data. The variance (σ 2) and
standard deviation (σ ) of the predicted values with the sensor
data are illustrated in Table III. When analyzing the table,
a minimum standard deviation of 0.12624 for the minimum
velocity (50 rpm) was obtained, and it was clear that the
predicted values were close to the sensor data. However, the

TABLE III
ANALYSIS OF MOTOR VELOCITY

standard deviations of the other two velocities (0.1373 and
0.4405) did not deviate significantly from the real value. In this
study, two analyses were conducted, and the accuracy of the
polynomial extrapolation model was initially determined. The
second method determined the PPF model accuracy because
the predicted samples contained Gaussian noise. Equation (1)
shows the elimination of these values. The second result shows
that the values of σ are smaller than those of the polynomial
extrapolation model and very close to the real values. This
means that the data error reduction occurred much better than
polynomial extrapolation.

For the disturbance torque, the same experiment was
repeated at three velocities in two different directions. The
same accuracy test was conducted using the polynomial
extrapolation model and PPF. Here, the most accurate value
for the minimum velocity was obtained, which was negligible
(σ = 2.02 × 10−6 for the extrapolation model and σ =

2.02 × 10−6 for PPF). Variance and standard deviation of
the predicted values are illustrated in Table IV.

In addition to the variance and standard deviation values,
30 samples were plotted with the predicted values and sensor
data, as shown in Figs. 5–7. The horizontal axis describes
the time, whereas the vertical axis represents the velocity.
Figs. 5–7 are a graphic summary of the relationship between
the sensor data, extrapolated values, and PPF values. The
sample for this study consisted of three different velocities
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Fig. 4. DOB with the dc motor.

TABLE IV
ANALYSIS OF MOTOR DISTURBANCE TORQUE

Fig. 5. 50-rpm velocity sensor data with extrapolated and PPF values.

(50, 100, and 500 rpm) of a dc motor, as shown in the figures.
In the figures, the blue line indicates the PPF-predicted values
from DOB’s previous DOB values. The black lines are the
real-time values obtained from the DOB. A minimum standard
deviation of 0.11148 was obtained for PPF at a velocity of
50 rpm, and it is clear that the predicted values are close to
the sensor data. However, the standard deviation of the other

Fig. 6. 100-rpm velocity sensor data with extrapolated and PPF values.

Fig. 7. 500-rpm velocity sensor data with extrapolated and PPF values.

two velocities (0.1255 and 0.4024) did not deviate significantly
from the real value. Our figure provides strong evidence of the
accuracy of the PPF method.
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Fig. 8. Predicted value of disturbance torque (PPF), extrapolated values, and
sensor data at 50-rpm velocity.

Fig. 9. Predicted value of disturbance torque (PPF), extrapolated values, and
sensor data at −50-rpm velocity.

Fig. 10. Predicted value of disturbance torque (PPF), extrapolated values,
and sensor data at 100-rpm velocity.

TABLE V
SMALL DC MOTOR SPECIFICATIONS

Figs. 8–13 illustrate the graphic summary of the relationship
between the sensor data, the extrapolated value, and the PPF

Fig. 11. Predicted value of disturbance torque (PPF), extrapolated values,
and sensor data at −100-rpm velocity.

Fig. 12. Predicted value of disturbance torque (PPF), extrapolated values,
and sensor data at 500-rpm velocity.

Fig. 13. Predicted value of disturbance torque (PPF), extrapolated values,
and sensor data at −500-rpm velocity.

value of the disturbance torque. The horizontal axis describes
the time, while the vertical axis highlights the disturbance
torque, which manifests a strong association between sensor
data and extrapolated values of disturbance torque. It can be
seen that sensor data and PPF values are very close to each
other, and it is negligible (σ = 1.83 × 10−6). Fig. 10 of
the 100-rpm velocity has some nonlinearities even though our
filters predict the value with a standard deviation of (σ =

1.80 × 10−6).
Figures 5–13 depict convincing evidence for a strong asso-

ciation between PPF and DOB data. PPF provides an algo-
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Fig. 14. Different types of disturbances are applied to the dc motor.

Fig. 15. Supporting disturbance estimated from 40 sample data.

Fig. 16. Opposing disturbance estimated from 40 sample data.

Fig. 17. Periodic disturbance estimated from 40 sample data.

rithm to determine an estimate by combining models of the
system and noisy measurements of certain parameters using
polynomial extrapolation. Thus, the data from the DOB can
fit into polynomial equations and extrapolate the future value
according to the degree of the polynomial that matches the

Fig. 18. Overall system performance of the PPF with supporting disturbance.

Fig. 19. Overall system performance of the PPF with opposing disturbance.

Fig. 20. Overall system performance of the PPF with periodic disturbance.

polynomial equation. However, convergence can only be guar-
anteed for linearized systems. State estimation for nonlinear
systems is the subject of this work; therefore, the convergence
of the original nonlinear system must be verified and validated.

To validate the PPF-based DOB data experimentally, the
experimental setup is described in Fig. 14. When estimating
the dynamic state in nonlinear situations, we consider that
external disturbances can be applied using different small
dc motors with different modes. To reduce the gravitational
influence of the connected motor, motor shafts were cou-
pled, and the disturbance motor was placed on top of the
main motor. There are three methods to apply disturbances:
supporting, opposing, and periodic. The controller of the
disturbance motor uses a constant PWM to produce applied
disturbances in the supporting and opposing modes. In the
periodic disturbance mode, a constant sinusoidal disturbance
with a range of frequencies was delivered. The arrows in
Fig. 14 represent the rotational direction of the motors in each
mode. Table V presents the small dc motor specifications of
the experimental system.
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The disturbance torque estimated and predicted using the
sensor and the PPF values for the three types of disturbances
of the 40 data points are plotted against time, as shown in
Figs. 15–17, and Figs. 18–20 show the overall performance
of the PPF with sensor values. From the three types of
disturbances applied to the system for validating the nonlinear
scenario, the figures show that the PPF can achieve optimized
prediction and estimation of nonlinear states.

There was a statistically significant correlation between
the proposed method and a previous study based on the
observer-based dc motor parameter estimation method [1],
[11], [44]. These findings demonstrated the effectiveness of
the proposed method. Further validation studies using the
existing estimation methods are required. This aspect should
be considered in future studies.

V. CONCLUSION

To achieve the desired responses in motion control appli-
cations, predicting and compensating for the states and noise
are essential to increase the robustness, high precision, and fast
responses of the system. In this study, a novel PPF method was
proposed for estimating the states from consecutive and evenly
spaced sensor data with noise using polynomial extrapolation.
With this approach, computational expenses can be minimized,
and small nonlinearities and the related mathematical burden
can be reduced by employing a suitably precise low-order
polynomial approximation. In parallel, we proved that the
DOB can be converted into an estimator and predictor to
calculate the disturbance torque in dc motor systems. The
algorithm operates in three stages: initialization, which pro-
vides the initial system state, and initial state uncertainty,
which is followed by the prediction. To experimentally validate
the algorithm, the velocity response, the motor torque, and
the disturbance torque of the dc motor were measured. PPF
approximates the data from the motor drives and estimates the
value of ẑn based on previous measurements from the DOB.
The difference between the real-time DOB data and PPF-based
predicted values shows a standard deviation of 0.12624 for
the velocity component and 2.02 × 10−6 for the disturbance
torque. From the performance analysis of the proposed method
combined with the previous study method, a statistically
significant relationship can be observed. The validity of the
proposed method is experimentally verified. Further validation
of the prediction method should be performed using other
existing methods.
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